首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract  Nodulation is the predominant cellular defense reaction to bacterial challenges in insects. In this study, third instar larvae of Chrysomya megacephala were injected with bacteria, Escherichia coli K 12 (106 CFU/mL, 2 μL), immediately prior to injection of inhibitors of eicosanoid biosynthesis, which sharply reduced nodulation response. Test larvae were treated with specific inhibitors of phospholipase A2 (dexamethasone), cyclo-oxygenase (indomethacin, ibuprofen and piroxicam), dual cyclo-oxygenase/lipoxygenase (phenidone) and lipoxygenase (esculetin) and these reduced nodulation except esculetin. The influence of bacteria was obvious within 2 h of injection (5 nodules/larva), and increased to a maximum after 8 h (with 15 nodules/larva), and then significantly reduced over 24 h (9 nodules/larva). The inhibitory influence of dexamethasone was apparent within 2 h of injection (4 vs. 5 nodules/larva), and nodulation was significantly reduced, compared to control, over 24 h (5 vs. 8 nodules/larva). Increased dosages of ibuprofen, indomethacin, piroxicam and phenidone led to decreased numbers of nodules. Nodules continued to exist during the pupal stage. However, the effects of dexamethasone were reversed by treating bacteria-injected insects with an eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. These findings approved our view that eicosanoid can mediate cellular defense mechanisms in response to bacterial infections in another Dipteran insect C. megacephala .  相似文献   

2.
The effect on arachidonate metabolism of two compounds (BW755C and benoxaprofen) which have been reported to inhibit 5' lipoxygenase in leukocytes has been evaluated in human polymorphonuclear leukocytes (PMN) stimulated with the calcium ionophore A23187 and serum-treated zymosan (STZ). The syntheses of leukotriene B4 (LTB4) and thromboxane B2 (TXB2) from endogenous substrate were determined by specific radioimmunoassays as indicators of 5' lipoxygenase and cyclo-oxygenase activity in the PMN respectively. Benoxaprofen inhibited the synthesis of leukotriene B4 by human PMN stimulated with the calcium ionophore A23187, but it was approximately 5 times less potent than BW755C. However, benoxaprofen (IC50 1.6 X 10(-4)M) was approximately 100 times less potent than BW755C (IC50 1.7 X 10(-6)M) at inhibiting leukotriene B4 synthesis induced by serum-treated zymosan. Both drugs inhibited thromboxane synthesis by leukocytes stimulated with A23187 or serum-treated zymosan at similar concentrations (approximately 5 X 10(-6)M). The data obtained using STZ as stimulus are consistent with previous in vivo studies and indicate that benoxaprofen is a relatively selective inhibitor of cyclo-oxygenase. However, this selectivity was far less apparent when A23187 was used as a stimulus to release the eicosanoids which suggests that this inhibition could be via an indirect mechanism and therefore A23187 should be used with caution as a stimulus of 5' lipoxygenase for evaluating inhibitors of eicosanoid synthesis.  相似文献   

3.
Schistosoma mansoni: eicosanoid production by cercariae   总被引:4,自引:0,他引:4  
Cercariae of Schistosoma mansoni are stimulated to penetrate skin by certain free fatty acids. The cercariae have an active arachidonate cascade, presumably using host skin essential fatty acids as cascade precursors. Exposing cercariae to 3.3 mM linoleate for 1, 10, and 60 min resulted in production of a wide variety of eicosanoids. Using high-performance liquid chromatography, eicosanoids coeluting with prostaglandin E2, D2, and A2, leukotriene B4, and 5-hydroxyeicosatetraenoic acid standards were identified, as well as unidentified peak positions. Radioimmunoassay confirmed the presence of immunoreactive prostaglandin E1, and E2, and 5- and 15-hydroxyeicosatetraenoic acids in cercarial extracts. No eicosanoid production occurred when cercariae were exposed to 3.3 mM oleate and 1 or 330 microM linoleate. Both high-performance liquid chromatography and radioimmunoassay data indicated that cercariae regulate the production of eicosanoids through time. It is postulated that arachidonate metabolism and subsequent eicosanoid production are required for successful cercarial penetration.  相似文献   

4.
In examining the structure-activity relationship of a diverse group of chemicals reported to prevent cercarial penetration after topical application, we noticed a moiety that was common to free fatty acids and prostaglandins. Because unsaturated fatty acids have been reported to stimulate cercarial penetration, we hypothesized that cercarial stimulation by skin and fatty acids may invoke prostaglandin mechanisms in cercariae, skin, or both. Thus we compared the stimulation of cercariae by a series of essential and nonessential fatty acids and demonstrated an inhibition of this response by ibuprofen and aspirin, known cyclo-oxygenase inhibitors, and by 13-azaprostanoic acid, a potent antagonist of the thromboxane/endoperoxide receptor. These data led us to postulate a major role for prostaglandins in the cercarial penetration response.  相似文献   

5.
1-0-octadecyl-2-0-acetyl-sn-glyceryl-3-phosphorylcholine (C18-AGEPC) stimulated a concentration (10-10-10-6M)-dependent release of granule-associated enzymes from human neutrophils. Cells which were not preincubated with cytochalasin B prior to exposure to C18-AGEPC did not degranulate. C18-AGEPC-elicited enzyme release was significantly reduced, but not abolished, in the absence of extracellular calcium. The lipoxygenase inhibitor, nordihydroguaiaretic acid and the lipoxygenase/cyclo-oxygenase inhibitor, 5,8,11,14-eicosatetraynoic acid, an acetylenic analog of arachidonic acid, caused a concentration-dependent suppression of enzyme discharge from neutrophils exposed to C18-AGEPC. However, the cyclo-oxygenase inhibitors, indomethacin, ibuprofen and flurbiprofen had no effect on C18-AGEPC-induced enzyme extrusion.  相似文献   

6.
Brugia malayi L3 molt to the L4 stage in serum-free cultures supplemented with arachidonic, linoleic, or linolenic acids and the basidiomycetous yeast Rhodotorula minuta. These fatty acids are capable of entering the eicosanoid pathway of arachidonate metabolism, the pathway responsible for generating a number of biologically active mediators, including prostaglandins, leukotrienes, and lipoxins. To determine whether this pathway was required for L3 development, we added dual inhibitors of cyclooxygenase and lipoxygenase to in vitro cultures containing B. malayi L3. These compounds significantly inhibited L3 molting. To evaluate whether 1 or both of these pathways of arachidonate metabolism were involved in molting, we tested drugs inhibiting either cyclooxygenase or lipoxygenase. Lipoxygenase inhibitors blocked L3 molting, whereas cyclooxygenase inhibitors did not. To assess whether enzymes operating downstream of lipoxygenase were also involved in L3 molting, we added inhibitors of enzymes involved in leukotriene synthesis and found they were also capable of preventing development. We tested the same inhibitor panel on Dirofilaria immitis L3. A single lipoxygenase inhibitor and inhibitors of 2 different enzymes operating downstream of lipoxygenase disrupted D. immitis development. These results demonstrate that a lipoxygenase pathway product is required for molting of the infective stage larvae of filarial parasites.  相似文献   

7.
The pH dependence of Schistosoma mansoni cercarial penetration and transformation was determined using a gelatin:agar matrix, containing 3mM linoleate, as a penetration substrate. Penetration was largely unaffected by pH, approaching 100% over the pH range of 5.4 to 8.2, while transformation had an optimum pH range between 6.2 and 7.4. Within this pH range, between 74 and 89% of cercariae lost their tails. Outside this range, transformation decreased to 0% above pH 7.8 and dropped to 57% at pH 5.4. Esculetin, a lipoxygenase inhibitor, also incorporated into the agar:gelatin plates at a concentration of 1 mM, had little effect on cercarial penetration, except between pH 6.5 and 6.65, where penetration rates fell to 50% at pH 6.63. Transformation, however, was inhibited by esculetin, except between pH 6.5 and 6.8, where transformation was statistically equivalent to controls (P = 0.064, two-tailed Student's t test). Cercarial eicosanoid production measured at pH 6.55 and 7.2 in the presence and absence of 1 mM esculetin has led to the tentative identification of a 5-lipoxygenase product associated with cercarial penetration: LTB4 or 6-trans LTB4, a breakdown product of LTB4. We discuss the importance of pH control in cercarial experiments as well as the possible modulatory role skin pH (surface, epidermal, and dermal) may have in regulating cercarial eicosanoid production.  相似文献   

8.
Albumin is a major determinant of eicosanoid formation, affecting autacoids important in cell-cell interactions. We delineated three mechanisms by which albumin controlled platelet eicosanoid formation: 1) Albumin diverted free arachidonate toward 12-lipoxygenation. 2) Albumin enhanced release of arachidonate from phospholipids. 3) Albumin inhibited incorporation of arachidonate from the medium into platelet phospholipids. 12(S)-Hydroxyheptadecatrienoic acid (12-HHTrE) formation was reduced 70% by albumin as compared to that formed in albumin-free medium. In sharp contrast, formation of 12(S)-hydroxyeicosatetraenoic acid (12-HETE), the platelet lipoxygenase product, was much less influenced by albumin. Moreover, 12-HETE production in the presence of albumin was markedly increased and prolonged after aspirin treatment. These data suggested that albumin redirected released endogenous arachidonate from cyclooxygenase to lipoxygenase. Therefore, the metabolic fate of arachidonate present in the medium of stimulated platelets was studied by adding tracer [3H]arachidonate 30 sec before thrombin. Albumin increased arachidonate metabolism by lipoxygenase 7-fold as compared to albumin-free controls, while cyclooxygenation increased 2.7-fold. Redirection of eicosanoid metabolism by albumin toward lipoxygenase products constitutes a heretofore undescribed and potentially important physiological role for albumin. In vitro utilization of albumin may reflect in vivo events in thrombosis and hemostasis more accurately than previous studies without albumin could appreciate.  相似文献   

9.
Many studies have documented the involvement of eicosanoids in insect cellular immune responses to bacteria. The use of the fungal pathogen Beauveria bassiana as a nodulation elicitor, with inhibition of phospholipase A(2) by dexamethasone, extends the principle to fungi. This study also provides the first evidence of involvement of the lipoxygenase (LOX) pathway rather than the cyclooxygenase (COX) pathway in synthesis of the nodulation mediating eicosanoid(s). The LOX product, 5(S)-hydroperoxyeicosa-6E,8Z,11Z,14Z-tetraenoic acid (5-HPETE), substantially reversed nodulation inhibition caused by dexamethasone and the LOX inhibitors, caffeic acid and esculetin. The COX product, prostaglandin H(2) (PGH(2)), did not reverse the nodulation inhibition by dexamethasone or the COX inhibitor, ibuprofen. None of the inhibitors tested had a significant effect on the phagocytosis of B. bassiana blastospores in vitro. Hemocyte phenoloxidase activity was reduced by dexamethasone, esculetin, and the COX inhibitor, indomethacin. The rescue candidates 5-HPETE and PGH(2) did not reverse the inhibition.  相似文献   

10.
Renal glomeruli have cyclo-oxygenase and lipoxygenase enzymes which convert arachidonic acid to prostaglandins, thromboxane and 12-hydroxyeicosatetraenoic acid. Glomerular epithelial and mesangial cells, in culture, also synthesize these arachidonate products. Angiotensin and vasopressin contract mesangial cells and stimulate mesangial synthesis of PGE2. PGE2, in the glomerulus, antagonizes the actions of angiotensin on the mesangium and hence reduces angiotensin-mediated glomerular contraction. Glomerular immune injury (nephrotoxic serum nephritis) augments glomerular production of prostaglandins and thromboxane. Thromboxane reduces glomerular function and inhibition of thromboxane synthesis preserves glomerular filtration rate and renal plasma flow in this disease model. Spontaneously hypertensive rats also have enhanced glomerular prostaglandin and thromboxane synthesis. Although acute inhibition of thromboxane synthesis will vasodilate the hypertensive rat kidney, chronic inhibition does not reduce blood pressure or increase renal blood flow.  相似文献   

11.
The immunological release of SRS-A was investigated in guinea-pig chopped lung. A number of unsaturated fatty acids, all of which are substrates for arachidonate lipoxygenase were found to potentiate the release of SRS-A. This potentiation was enhanced by indomethacin, a cyclo-oxygenase inhibitor, and completely reversed by nordihydroguaiaretic acid (NDGA) and eicosatetraynoic acid (ETA) which inhibit lipoxygenase. This suggests that some aspect of arachidonate lipoxygenase action stimulates release of SRS-A and that release of SRS-A is increased by redirection of arachidonic acid (AA) metabolism via the lipoxygenase pathway (Hamberg, 1976). However, although exogenous 14C-AA increased SRS-A output it was not incorporated into SRS-A.  相似文献   

12.
Nine pharmaceutical inhibitors of eicosanoid biosynthesis (e.g., bromophenacyl bromide, clotrimazole, diclofenamic acid, esculetin, flufenamic acid, indomethacin, nimesulide, sulindac, tolfenamic acid) that increased the susceptibility of the gypsy moth, Lymantria dispar (L.), to the nucleopolyhedrovirus LdMNPV were tested against the beet armyworm Spodoptera exigua (Hübner), the corn earworm Helicoverpa zea (Boddie) and the fall armyworm Spodoptera frugiperda (J.E. Smith) and their respective NPVs to determine whether these compounds also alter the susceptibility of these insects. The susceptibility of the beet armyworm was increased by six inhibitors (bromophenacyl bromide, clotrimazole, diclofenic acid, esculetin, flufenamic acid, nimesulide). The susceptibility of the fall armyworm was increased by seven inhibitors, (bromophenacyl bromide, diclofenamic acid, esculetin, indomethacin, nimesulide, sulindac, tolfenamic acid), whereas the susceptibility of the corn earworm was increased by only one inhibitor (sulindac). The influence of the cyclooxygenase inhibitor, indomethacin was expressed in a concentration-related manner in beet armyworms. We infer from these findings that eicosanoids, including prostaglandins and lipoxygenase products, act in insect anti-viral defenses.  相似文献   

13.
The immunological release of SRS-A was investigated in guinea-pig chopped lung. A number of unsaturated fatty acids, all of which are substrates for arachidonate lipoxygenase were found to potentiate the release of SRS-A. This potentiation was enhanced by indomethacin, a cyclo-oxygenase inhibitor, and completely reversed by nordihydroguaiaretic acid (NDGA) and eicosatetraynoic acid (ETA) which inhibit lipoxygenase. This suggests that some aspect of arachidonate lipoxygenase action stimulates release of SRS-A and that release of SRS-A is increased by redirection of arachidonic acid (AA) metabolism via the lipoxygenase pathway (Hamberg, 1976). However, although exogenous 14C-AA increased SRS-A output it was not incorporated into SRS-A.  相似文献   

14.
Concentration-response curves to serotonin and phenylephrine were obtained from aortic strips subjected to low (0.75 g) and high (3.0) preloads in the presence and absence of eicosanoid synthesis inhibitors. The sensitivity of the strips to both agonists was greater in the high preload strips. The cyclooxygenase inhibitor, indomethacin (28 microM), shifted the serotonin concentration-response curves to the right. However, the preload effect still remained. The lipoxygenase inhibitor, nordihydroguaiaretic acid (10 microM), not only decreased sensitivity to serotonin and phenylephrine, but eliminated the preload effect as well. These results suggest that 1) both cyclooxygenase and lipoxygenase metabolites affect the sensitivity of isolated arterial smooth muscle to vasoactive agents, and 2) lipoxygenase, but not cyclooxygenase, metabolites may play a role in the effect of preload on arterial smooth muscle sensitivity.  相似文献   

15.
Abstract The potential role of tumor necrosis factor α (TNFα) and eicosanoids in the pathogenesis of experimental neonatal sepsis models was investigated. Lethality was induced in neonatal rats by administration of heat killed group B streptococci (GBS, 7 mg kg−1 intracardially) or Salmonella enteritidis endotoxin (0.35 mg kg−1 intracardially). The relative efficacy of six compounds with putative TNFα and eicosanoid inhibitory actions were tested. These were: ibuprofen (3 and 20 mg kg−1), a cyclo-oxygenase inhibitor; CGS85515 (30 mg kg−1), a lipoxygenase inhibitor; LY203647 (30 mg kg−1), a leukotriene D4 receptor antagonist; pentoxifylline (10, 50 and 100 mg kg−1), a TNF inhibitor; cloricromene (2 and 10 mg kg−1), a thromboxane A2 synthetase inhibitor with TNFα inhibitory actions; and SKF86002 (2.5, 5, 10 and 20 mg kg−1), a dual cyclo-oxygenase/lipoxygenase inhibitor with TNFα inhibitory activity. Pentoxifylline, cloricromene and SKF86002, when given intraperitoneally 2 h before challenge, produced 45, 52 and 61% reductions, respectively, in plasma levels of TNFα at 2.5 h post-injection with killed GBS ( P < 0.05). On the contrary, pretreatment with ibuprofen, CGS85515 or LY203647 did not significantly affect TNFα levels. All compounds significantly attenuated the lethality by killed GBS and S. enteritidis endotoxin. These data suggest that TNFα and eicoisanoids contribute to the pathogenesis of shock induced by killed GBS and endotoxemia.  相似文献   

16.
Metarhizium anisopliae conidia (spores) reduced weight gain and caused death when injected into Manduca sexta larvae. When the fungus was co-injected with the eicosanoid biosynthesis inhibitor dexamethasone, larval weight gain was further reduced and mortality increased. These effects were reversed when dexamethasone was given together with the eicosanoid precursor arachidonic acid (AA). Similarly, treatment with other eicosanoid biosynthesis inhibitors (esculetin, phenidone, ibuprofen, and indomethacin) with differing modes of action enhanced the reduction in weight gain caused by mycosis. Injection of M. anisopliae conidia induced nodule formation in vivo; nodule numbers were reduced by dexamethasone, and restored by AA. Incubation of hemocytes with conidia caused microaggregation of hemocytes (indicative of nodule formation) in vitro and this was inhibited by dexamethasone, suggesting that dexamethasone acts directly on hemocytes, although inhibition was only partially reversed by AA. We suggest that the M. sexta immune response to fungal pathogens is normally modulated by physiological systems that include eicosanoid biosynthesis. This is the first demonstration that the virulence of a fungal entomopathogen can be enhanced by compromising the insect host's immune system.  相似文献   

17.
A murine killer T cell line, G-CTLL 1, whose proliferation depends on the presence of interleukin 2 (IL-2), was used to analyze the mechanism of IL-2 action with respect to sterol synthesis and arachidonate metabolism. De novo sterol synthesis was substantially enhanced much earlier than DNA synthesis, and the rate reached a maximum at 13 hr after the addition of IL-2. Compactin, which is a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase, the enzyme in the rate-limiting step of the sterol synthesis), inhibited the IL-2-induced DNA synthesis. The addition of mevalonate, the product of HMG CoA reductase, prevented the inhibition of DNA synthesis by compactin, suggesting that the supply of a sufficient amount of sterol is an essential prerequisite for IL-2 action. The IL-2-induced DNA synthesis was also inhibited by AA861, a specific inhibitor of arachidonate 5-lipoxygenase, and by other lipoxygenase inhibitors such as nordihydroguaiaretic acid and esculetin. In contrast, indomethacin, an inhibitor of arachidonate cyclooxygenase, had no effect. These findings suggest that synthesis of 5-lipoxygenase products is also a prerequisite. The inhibition of DNA synthesis was effectively inhibited only when compactin or lipoxygenase inhibitors were added early enough to block the synthesis of sterols or 5-lipoxygenase products; addition of the reagents after 3 hr decreased the inhibition with time. Therefore, about 3 hr after the addition of IL-2, several drastic intracellular changes are assumed to begin and to lead to DNA synthesis.  相似文献   

18.
The effect on arachidonate metabolism of two compounds (BW755C and benoxaprofen) which have been reported to inhibit 5′ lipoxygenase in leukocytes has been evaluated in human polymorphonuclear leukocytes (PMN) stimulated with the calcium ionophore A23187 and serum-treated zymosan (STZ). The syntheses of leukotriene B4 (LTB4) and thromboxane B2 (TXB2) from endogenous substrate were determined by specific radioimmunoassays as indicators of 5′ lipoxygenase and cyclo-oxygenase activity in the PMN respectively. Benoxaprofen inhibited the synthesis of leukotriene B4 by human PMN stimulated with the calcium ionophore A23187, but it was approximately 5 times less potent than BW755C. However, benoxaprofen (IC50 1.6 × 10−4M) was approximately 100 times less potent than BW755C (IC50 1.7 × 10−6M) at inhibiting leukotriene B4 synthesis induced by serum-treated zymosan. Both drugs inhibited thromboxane synthesis by leukocytes stimulated with A23187 or serum-treated zymosan at similar concentrations (approximately 5 × 10−6M). The data obtained using STZ as stimulus are consistent with previous studies and indicate that benoxaprofen is a relatively selective inhibitor of cylco-oxygenase. However, this selectivity was far less apparent when A23187 was used as a stimulus to release the eicosanoids which suggests that this inhibition could be via an indirect mechanism and therefore A23187 should be used with caution as a stimulus of 5′ lipoxygenase for evaluating inhibitors of eicosanoid synthesis.  相似文献   

19.
Nodulation is the first, and quantitatively predominant, cellular defense reaction to bacterial infection in insects and other invertebrates. Inhibition of eicosanoid biosynthesis in true armyworms, Pseudaletia unipuncta, and black cutworms, Agrotis ipsilon, immediately prior to intrahemocoelic injections with heat-killed preparations of the bacterium, Serratia marcescens, severely impaired the nodulation response. Five eicosanoid biosynthesis inhibitors, including dexamethasone (a phospholipase A(2) inhibitor), indomethacin, ibuprofen (cyclooxygenase inhibitors), phenidone (dual lipoxygenase/cyclooxygenase inhibitor) and eicosatetraynoic acid (an arachidonic acid analog that inhibits all arachidonic acid metabolism) severely reduced nodulation in infected insects. The dexamethasone effects were reversed by treating true armyworms with arachidonic acid immediately after infection. In addition to these pharmacological findings, we demonstrate that an eicosanoid biosynthesis system is present in these insects. Arachidonic acid is present in fat body phospholipids at about 0.4% of total phospholipid fatty acids. Fat body expressed a phospholipase A(2) that can hydrolyze arachidonic acid from the sn-2 position of cellular phospholipids. Fat body preparations were competent to biosynthesize prostaglandins, of which PGE(2) was the major product. These findings support the hypothesis that eicosanoids mediate cellular immune reactions in insects.  相似文献   

20.
The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号