首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human urokinase-type plasminogen activator receptor (uPAR/CD87) is expressed at the invasive interface of the tumor-stromal microenvironment in many human cancers and interacts with a wide array of extracellular molecules. An anti-uPAR antibody (ATN615) was prepared using hybridoma technology. This antibody binds to uPAR in vitro with high affinity (K(d) approximately 1 nM) and does not interfere with uPA binding to uPAR. Here we report the crystal structure of the Fab fragment of ATN615 at 1.77 A and the analysis of ATN615-suPAR-ATF structure that was previously determined, emphasizing the ATN615-suPAR interaction. The complementarity determining regions (CDRs) of ATN615 consist of a high percentage of aromatic residues, and form a relatively flat and undulating surface. The ATN615 Fab fragment recognizes domain 3 of suPAR. The antibody-antigen recognition involves 11 suPAR residues and 12 Fab residues from five CDRs. Structural data suggest that Pro188, Asn190, Gly191, and Arg192 residues of uPAR are the key residues for the antibody recognition, while Pro189 and Arg192 render specificity of ATN615 for human uPAR. Interestingly, this antibody-antigen interface has a small contact area, mainly polar interaction with little hydrophobic character, yet has high binding strength. Furthermore, several solvent molecules (assigned as polyethylene glycols) were clearly visible in the binding interface between antibody and antigen, suggesting that solvent molecules may be important for the maximal binding between suPAR and ATN615 Fab. ATN615 undergoes small but noticeable changes in its CDR region upon antigen binding.  相似文献   

2.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR) on the surface of a cancer cell is considered to be a trigger for starting cancer invasions. In addition, the somatomedin B (SMB) domain of vitronectin binds simultaneously to uPAR to construct a ternary complex of uPAR–uPA–SMB. Here we present stable structures of the solvated complexes of uPAR–uPA and uPAR–uPA–SMB obtained by classical molecular mechanics simulations, and the specific interactions between uPAR, uPA and SMB are investigated by ab initio fragment molecular orbital calculations. The result indicates that the SMB binding enhances the binding affinity between uPAR and uPA, although there is no direct contact between SMB and uPA. In particular, the specific interaction between uPAR and the Lys36 residue of uPA is significantly affected by the SMB binding. The positively charged Lys23, Lys46 and Lys61 residues of uPA have strong attractive interactions to uPAR in both the uPAR–uPA and uPAR–uPA–SMB complexes, demonstrating the importance of these residues in the specific binding between uPAR and uPA. The current results on the specific interactions are informative for proposing potent antagonists, which block the uPA and SMB bindings to uPAR.  相似文献   

3.
The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent with this multifunctional role, uPAR binds several extracellular ligands, including uPA and vitronectin. Structural studies suggest that uPAR possesses structural flexibility. It is, however, not clear whether this flexibility is an inherent property of the uPAR structure per se or whether it is induced upon ligand binding. The crystal structure of human uPAR in its ligand-free state would clarify this issue, but such information remains unfortunately elusive. We now report the crystal structures of a stabilized, human uPAR (H47C/N259C) in its ligand-free form to 2.4 Å and in complex with amino-terminal fragment (ATF) to 3.2 Å. The structure of uPARH47C/N259C in complex with ATF resembles the wild-type uPAR·ATF complex, demonstrating that these mutations do not perturb the uPA binding properties of uPAR. The present structure of uPARH47C/N259C provides the first structural definition of uPAR in its ligand-free form, which represents one of the biologically active conformations of uPAR as defined by extensive biochemical studies. The domain boundary between uPAR DI–DII domains is more flexible than the DII–DIII domain boundary. Two important structural features are highlighted by the present uPAR structure. First, the DI–DIII domain boundary may face the cell membrane. Second, loop 130–140 of uPAR plays a dynamic role during ligand loading/unloading. Together, these studies provide new insights into uPAR structure–function relationships, emphasizing the importance of the inter-domain dynamics of this modular receptor.  相似文献   

4.
Plasminogen activator inhibitor 1 (PAI-1) is a major inhibitor of urokinase-type plasminogen activator (uPA). In this study, we explored the role of PAI-1 in cell signaling. In MCF-7 cells, PAI-1 did not directly activate the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) 1 and ERK2, but instead altered the response to uPA so that ERK phosphorylation was sustained. This effect required the cooperative function of uPAR and the very low density lipoprotein receptor (VLDLr). When MCF-7 cells were treated with uPA-PAI-1 complex in the presence of the VLDLr antagonist, receptor-associated protein, or with uPA-PAI-1(R76E) complex, which binds to the VLDLr with greatly decreased affinity, transient ERK phosphorylation (<5 min) was observed, mimicking the uPA response. ERK phosphorylation was not induced by tissue-type plasminogen activator-PAI-1 complex or by uPA-PAI-1 complex in the presence of antibodies that block uPA binding to uPAR. uPA-PAI-1 complex induced tyrosine phosphorylation of focal adhesion kinase and Shc and sustained association of Sos with Shc, whereas uPA caused transient association of Sos with Shc.By sustaining ERK phosphorylation, PAI-1 converted uPA into an MCF-7 cell mitogen. This activity was blocked by receptor-associated protein and not observed with uPA-PAI-1(R76E) complex, demonstrating the importance of the VLDLr. uPA promoted the growth of other cells in which ERK phosphorylation was sustained, including beta3 integrin overexpressing MCF-7 cells and HT 1080 cells. The MEK inhibitor, PD098059, blocked the growth-promoting activity of uPA and uPA-PAI-1 complex in these cells. Our results demonstrate that PAI-1 may regulate uPA-initiated cell signaling by a mechanism that requires VLDLr recruitment. The kinetics of ERK phosphorylation in response to uPAR ligation determine the function of uPA and uPA-PAI-1 complex as growth promoters.  相似文献   

5.
The urokinase-type plasminogen activator (uPA) plays an important role in cellular invasion.By using the downstream part of a 74 bp DNA region called the cooperation mediator (COM) of the uPA promoter as a bait sequence in the yeast one-hybrid screen, a gene called PBK1 was previously cloned from the cDNA library of the 95D lung cancer cell strain. In this study, the intracellular distribution of PBK1 was studied by using the transient transfection of pEGFP-C3-PBK1, and PBK1 was found to be localized in the nucleus. Co-transfection of pEGFP-C3-PBK1 and the deletion mutants of the pGL3-uPA promoter indicated that PBK1 can increase the uPA promoter activity by about 25% and this effect is uPA enhancer-dependent.Western blotting and Enzyme-linked immunoadsordent assay further confirmed that PBK1 can upregulate the expression of uPA. Our results suggest that PBK1 is involved in the regulation of uPA expression, which might provide a new clue to further understanding the regulation mechanism of uPA expression.  相似文献   

6.
The urokinase-type plasminogen activator receptor (uPAR) is involved in the regulation of cell motility in a variety of cell types. We show here that expression of human uPAR in growing murine fibroblasts leads to a dramatic reorganization of the actin cytoskeleton. uPAR expression induces multiple rapidly advancing protrusions that resemble the leading edge of migrating cells. The cytoskeletal changes are independent of uPA and activation of the RGD-binding activity of integrins but require uPAR binding to vitronectin (VN). The actin reorganization is blocked by coexpression of dominant negative versions of either Rac (N17Rac) or p130Cas, but not by inhibitors of Cdc42 or Rho, and is accompanied by a Rac-dependent increase in cell motility. In addition, a fourfold increase in the level of activated Rac is induced by uPAR expression. We conclude that uPAR interacts with VN both to initiate a p130Cas/Rac-dependent signaling pathway leading to actin reorganization and increased cell motility and to act as an adhesion receptor required for these responses. This mechanism may play a role in uPAR-mediated regulation of cell motility at sites where VN and uPAR are co-expressed, such as malignant tumors.  相似文献   

7.
Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy. Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons. On the other hand, it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR), making up the uPA system, are over-expressed in a variety of human tumors and tumor cell lines. The expression of uPA system is highly correlated with tumor invasion and metastasis. To exploit these characteristics in the design of tumor cell-selective cytotoxins, two prominent bacterial protein toxins, i.e., the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins. These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA system-expressing tumor cells, thereby killing these cells. This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents. It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.  相似文献   

8.
Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.  相似文献   

9.
We report the crystal structure of a soluble form of human urokinase-type plasminogen activator receptor (uPAR/CD87), which is expressed at the invasive areas of the tumor-stromal microenvironment in many human cancers. The structure was solved at 2.7 A in association with a competitive peptide inhibitor of the urokinase-type plasminogen activator (uPA)-uPAR interaction. uPAR is composed of three consecutive three-finger domains organized in an almost circular manner, which generates both a deep internal cavity where the peptide binds in a helical conformation, and a large external surface. This knowledge combined with the discovery of a convergent binding motif shared by the antagonist peptide and uPA allowed us to build a model of the human uPA-uPAR complex. This model reveals that the receptor-binding module of uPA engages the uPAR central cavity, thus leaving the external receptor surface accessible for other protein interactions (vitronectin and integrins). By this unique structural assembly, uPAR can orchestrate the fine interplay with the partners that are required to guide uPA-focalized proteolysis on the cell surface and control cell adhesion and migration.  相似文献   

10.
The urokinase-type plasminogen activator receptor (uPAR) serves as a receptor for urokinase plasminogen activator (uPA) and plays a role in invasion and migration of certain immune cells, including NK cells. Although uPAR is anchored to the plasma membrane via a glycosylphosphatidylinositol lipid moiety, we have previously shown that uPAR crosslinking results in MAP kinase signaling and increased integrin expression on the surface of the human NK cell line, YT. We report, herein, that the binding of uPA to uPAR also activates the MAP kinase signaling cascade. Furthermore, we show the physical association between uPAR and integrins on YT cells using cocapping and fluorescence microscopy. These results suggest that signaling initiated by either uPAR binding to uPA or by uPAR clustering may depend on the physical association of uPAR with integrins, a process that may be a prerequisite for NK cell accumulation within established tumor metastases during adoptive therapy.  相似文献   

11.
Serine proteases in the nervous system have functional roles in neural plasticity. Among them, urokinase-type plasminogen activator (uPA) exerts a variety of functions during development, and is involved in learning and memory. Furthermore, psychostimulants strongly induce uPA expression in the mesolimbic dopaminergic pathway. In this study, doxycycline-regulatable lentiviruses expressing either uPA, a dominant-negative form of uPA, or non-regulatable lentiviruses expressing small interfering RNAs (siRNAs) targeted against uPA have been prepared and injected into the ventral tegmental area (VTA) of rat brains. Over-expression of uPA in the VTA induces doxycycline-dependent expression of its receptor, uPAR, but not its inhibitor, plasminogen activator inhibitor-1 (PAI-1). uPAR expression in the VTA is repressed upon silencing of uPA with lentiviruses expressing siRNAs. In addition, over-expression of uPA in the VTA promotes a 15-fold increase in locomotion activity upon cocaine delivery. Animals expressing the dominant-negative form of uPA did not display such hyperlocomotor activity. These cocaine-induced behavioural changes, associated with uPA expression, could be suppressed in the presence of doxycycline or uPA-specific siRNAs expressing lentiviruses. These data strongly support the major role of urokinase in cocaine-mediated plasticity changes.  相似文献   

12.
The plasma membrane urokinase plasminogen activator receptor (uPAR) localizes and enhances activation of pro-uPA. Active uPA, in turn, promotes increased degradation of the extracellular matrix (ECM) by activation of plasminogen. uPAR binds to ECM molecules and integrins, which can affect cellular adhesion, signal transduction, and gene regulation. The current study examines the expression and function of uPAR in developing rat ventral prostates (VPs). We report that newborn VPs express uPAR mRNA and protein. In addition, the function of uPAR-bound uPA during in vitro prostatic development was studied by adding recombinant peptide competitive inhibitors of uPA-uPAR binding. Newborn VP explants were cultured in serum-free media for one week with 10(-8) M testosterone plus chimeric peptides containing a human immunoglobulin G Fc domain and either human uPA amino acids 1-138 (hu-uPA 1-138) as a control or mouse uPA amino acids 1-138 (mo-uPA 1-138) or 1-48 (mo-uPA 1-48). Hu-uPA 1-138-treated VPs underwent normal ductal branching morphogenesis and tissue differentiation. In contrast, VPs treated with mo-uPA 1-138 or mo-uPA 1-48 displayed a dose-dependent perturbation of ductal branching. Differentiation of both epithelial and mesenchymal tissues was also impaired. Mo-uPA 1-48-treated VPs contained significantly more apoptotic cells. These observations suggest that disruption of uPA binding to uPAR results in a retardation of the development of newborn VPs.  相似文献   

13.
14.
The urokinase-type plasminogen activator receptor (uPAR) has been implicated in tumor growth and metastasis. The crystal structure of uPAR revealed that the external surface is largely free to interact with a number of proteins. Additionally, due to absence of an intracellular cytoplasmic protein domain, many of the biological functions of uPAR necessitate interactions with other proteins. Here, we used yeast two-hybrid screening of breast cancer cDNA library to identify hSpry1 and HAX1 proteins as putative candidate proteins that interact with uPAR bait constructs. Interaction between these two candidates and uPAR was confirmed by GST-pull down, co-immunoprecipitation assays and confocal microscopy. These novel interactions that have been identified may also provide further evidence that uPAR can interact with a number of other proteins which may influence a range of biological functions.  相似文献   

15.
A known side-activity of the oral potassium-sparing diuretic drug amiloride is inhibition of the enzyme urokinase-type plasminogen activator (uPA, K(i)=7 μM), a promising anticancer target. Several studies have demonstrated significant antitumor/metastasis properties for amiloride in animal cancer models and it would appear that these arise, at least in part, through inhibition of uPA. Selective optimization of amiloride's structure for more potent inhibition of uPA and loss of diuretic effects would thus appear as an attractive strategy towards novel anticancer agents. The following report is a preliminary structure-activity exploration of amiloride analogs as inhibitors of uPA. A key finding was that the well-studied 5-substituted analogs ethylisopropyl amiloride (EIPA) and hexamethylene amiloride (HMA) are approximately twofold more potent than amiloride as uPA inhibitors.  相似文献   

16.
Bone is the most common site to which breast cancer cells metastasize. We found that osteoblast-like MG63 cells and human bone tissue contain the bile acid salt sodium deoxycholate (DC). MG63 cells take up and accumulate DC from the medium, suggesting that the bone-derived DC originates from serum. DC released from MG63 cells or bone tissue promotes cell survival and induces the migration of metastatic human breast cancer MDA-MB-231 cells. The bile acid receptor farnesoid X receptor (FXR) antagonist Z-guggulsterone prevents the migration of these cells and induces apoptosis. DC increases the gene expression of FXR and induces its translocation to the nucleus of MDA-MB-231 cells. Nuclear translocation of FXR is concurrent with the increase of urokinase-type plasminogen activator (uPA) and the formation of F-actin, two factors critical for the migration of breast cancer cells. Our results suggest a novel mechanism by which DC-induced increase of uPA and binding to the uPA receptor of the same breast cancer cell self-propel its migration and metastasis to the bone.  相似文献   

17.
Interaction between the urokinase-type plasminogen activator (uPA) and its receptor (uPAR) localizes cellular proteolysis and promotes cellular proliferation and migration. The interaction between uPA and uPAR at the surface of epithelial cells thereby contributes to the pathogenesis of lung inflammation and neoplasia. In this study, we sought to determine if uPA itself alters uPAR expression by lung epithelial cells. uPA enhanced uPAR expression as well as (125)I-uPA binding in Beas2B lung epithelial cells in a time- and concentration-dependent manner. The uPA-mediated induction of uPAR is not accomplished through its receptor and requires enzymatic activity. The low molecular weight fragment of uPA, lacking the receptor binding domain, was as potent as intact two-chain uPA in inducing expression of uPAR at the cell surface. Plasmin, the end product of plasminogen activation, did not alter uPA-mediated uPAR expression. Induction of uPAR by uPA represents a novel pathway by which epithelial cells can regulate uPAR-dependent cellular responses that may contribute to stromal remodeling in lung injury or neoplasia.  相似文献   

18.
Angiogenesis involves a series of tightly regulated cellular processes initiated primarily by the vascular endothelial growth factor (VEGF). The urokinase-type plasminogen activator system, consisting of the urokinase-type plasminogen activator (uPA), its cellular receptor uPAR and its inhibitor PAI-1, participates in the realization of these VEGF-induced processes by activating pericellular proteolysis, increasing vascular permeability and by supporting endothelial cell proliferation and migration.  相似文献   

19.
Angiogenesis involves a series of tightly regulated cellular processes initiated primarily by the vascular endothelial growth factor (VEGF). The urokinase-type plasminogen activator system, consisting of the urokinase-type plasminogen activator (uPA), its cellular receptor uPAR and its inhibitor PAI-1, participates in the realization of these VEGF-induced processes by activating pericellular proteolysis, increasing vascular permeability and by supporting endothelial cell proliferation and migration.  相似文献   

20.
The urokinase-type plasminogen activator system is a proteolytic system involved in tissue remodeling and cell migration. At the cell surface, receptor (uPAR)-bound urokinase (uPA) binds its inhibitor PAI-1, localized in the matrix, and the complex is internalized by endocytic receptors, such as the low-density lipoprotein receptor-related protein (LRP). We previously proposed a nonproteolytic role for the uPA system in human myogenic cell differentiation in vitro, i.e., cell fusion, and showed that myogenic cells can use PAI-1 as an adhesion matrix molecule. The aim of this study was to define the role of the uPA system in myogenic cell migration that is necessary for fusion. Using a two-dimensional motility assay and microcinematography, we showed that any interference with the [uPAR:uPA:PAI-1] complex formation, and interference with LRP binding to this complex, markedly decreased myogenic cell motility. This phenomenon was reversible and independent of plasmin activity. Inhibition of cell motility was associated with suppression of both filopodia and membrane ruffling activity. [uPAR:uPA:PAI-1:LRP] complex formation involves high-affinity molecular interactions and results in quick internalization of the complex. It is likely that this complex supports the membrane ruffling activity involved in the guidance of the migrating cell toward appropriate sites for attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号