首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishing nature conservation reserves is an effective and widely accepted practice to protect biodiversity. In order to promote the effectiveness and efficiency of the reserve, spatial attributes of the reserve should be considered. Connectedness (contiguity) is one of these important spatial attributes. Currently in the biological literature there are only a few formal/exact optimization approaches to endogenously designing a connected nature reserve. This article adds a new approach by adapting a spatial unit allocation model to the reserve design problem. Using concepts from network flow theory, the model defines a sink site from which no flow directs out and ensures contiguity by specifying the outflow and inflow relationship of the potential sites. Computational performance of the model is tested using hypothetical problems with various sizes including up to 400 potential sites. Results show that the time needed to solve the problem to optimality increases exponentially both as number of potential sites increases and as species distribution gets more sparse. An empirical application involving 80 potential sites and 15 bird species in part of Fox River watershed, Illinois USA is presented. Factors influencing an IP model’s computational performance and potential extensions of the model were discussed.  相似文献   

2.
MOTIVATION: Side-chain positioning is a central component of homology modeling and protein design. In a common formulation of the problem, the backbone is fixed, side-chain conformations come from a rotamer library, and a pairwise energy function is optimized. It is NP-complete to find even a reasonable approximate solution to this problem. We seek to put this hardness result into practical context. RESULTS: We present an integer linear programming (ILP) formulation of side-chain positioning that allows us to tackle large problem sizes. We relax the integrality constraint to give a polynomial-time linear programming (LP) heuristic. We apply LP to position side chains on native and homologous backbones and to choose side chains for protein design. Surprisingly, when positioning side chains on native and homologous backbones, optimal solutions using a simple, biologically relevant energy function can usually be found using LP. On the other hand, the design problem often cannot be solved using LP directly; however, optimal solutions for large instances can still be found using the computationally more expensive ILP procedure. While different energy functions also affect the difficulty of the problem, the LP/ILP approach is able to find optimal solutions. Our analysis is the first large-scale demonstration that LP-based approaches are highly effective in finding optimal (and successive near-optimal) solutions for the side-chain positioning problem.  相似文献   

3.
Alignment of molecular networks by integer quadratic programming   总被引:3,自引:0,他引:3  
MOTIVATION: With more and more data on molecular networks (e.g. protein interaction networks, gene regulatory networks and metabolic networks) available, the discovery of conserved patterns or signaling pathways by comparing various kinds of networks among different species or within a species becomes an increasingly important problem. However, most of the conventional approaches either restrict comparative analysis to special structures, such as pathways, or adopt heuristic algorithms due to computational burden. RESULTS: In this article, to find the conserved substructures, we develop an efficient algorithm for aligning molecular networks based on both molecule similarity and architecture similarity, by using integer quadratic programming (IQP). Such an IQP can be relaxed into the corresponding quadratic programming (QP) which almost always ensures an integer solution, thereby making molecular network alignment tractable without any approximation. The proposed framework is very flexible and can be applied to many kinds of molecular networks including weighted and unweighted, directed and undirected networks with or without loops. AVAILABILITY: Matlab code and data are available from http://zhangroup.aporc.org/bioinfo/MNAligner or http://intelligent.eic.osaka-sandai.ac.jp/chenen/software/MNAligner, or upon request from authors. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

4.
5.
A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.  相似文献   

6.
Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.  相似文献   

7.
8.
最优化设计连续的自然保护区   总被引:1,自引:0,他引:1  
王宜成 《生态学报》2011,31(17):5033-5041
生境破碎是导致生物多样性损失的重要原因之一,避免生境破碎的一个有效方式是建立连续的自然保护区使物种可在保护区内自由移动。不加选择地把大片土地都转为保护区是实现连续的一个途径,但资源是有限的,应当以最优的方式分配。如何最优化设计生态上和经济上都有效的保护区成为生物保护领域一个重要议题。从一组备选地块中选择一部分组成自然保护区,这样的问题主要有两种解法:启发式方法和最优化方法。启发式方法虽然灵活且运算速度快但不能保证最优解因而可能导致稀缺资源的浪费,最优化方法保证得到的解是最优的但建模和运算存在困难。建立一个线性整数规划模型用于设计一个最小的连续保护区,用Dantzig剪切法消除循环确保形成一个连续的树,对应一个连续的保护区,检验了模型的计算效率。结果显示,模型可在合理时间内解决一个包含100个备选地块和30个物种的连续保护区设计问题,计算效率显著优于同类目的的其它方法。以美国伊利诺伊州Cache河流域11种濒危鸟类的保护区设计为例说明了该方法的应用,设计了两种情况下连续的保护区。讨论了模型的局限和数据问题。  相似文献   

9.
Tank and Hopfield have shown that networks of analog neurons can be used to solve linear programming (LP) problems. We have re-examined their approach and found that their network model frequently computes solutions that are only suboptimal or that violate the LP problem's constraints. As their approach has proven unreliable, we have developed a new network model: the goal programming network. To this end, a network model was first developed for goal programming problems, a particular type of LP problems. From the manner the network operates on such problems, it was concluded that overconstrainedness, which is possibly present in an LP formulation, should be removed, and we have provided a simple procedure to accomplish this.  相似文献   

10.

Background  

It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events.  相似文献   

11.
12.

Background

Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects.

Results

In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature.

Conclusions

Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at “http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip”.
  相似文献   

13.
Signal transduction is an important process that transmits signals from the outside of a cell to the inside to mediate sophisticated biological responses. Effective computational models to unravel such a process by taking advantage of high-throughput genomic and proteomic data are needed to understand the essential mechanisms underlying the signaling pathways. In this article, we propose a novel method for uncovering signal transduction networks (STNs) by integrating protein interaction with gene expression data. Specifically, we formulate STN identification problem as an integer linear programming (ILP) model, which can be actually solved by a relaxed linear programming algorithm and is flexible for handling various prior information without any restriction on the network structures. The numerical results on yeast MAPK signaling pathways demonstrate that the proposed ILP model is able to uncover STNs or pathways in an efficient and accurate manner. In particular, the prediction results are found to be in high agreement with current biological knowledge and available information in literature. In addition, the proposed model is simple to be interpreted and easy to be implemented even for a large-scale system.  相似文献   

14.
对一般的0—1整数规划问题提出了一种半自动化的DNA计算模型。首先产生所给定的0—1整数规划问题的所有可能解,然后设置对应于0—1整数规划问题的约束不等式的探针,利用这些探针设计半自动化装置对所有可能解进行自动分离,最终找出0—1整数规划问题的解。该模型的最大优点在于具有自动化的特点;同时,从理论上来讲,该模型适合含有任意变量的任意0—1整数规划问题的求解。  相似文献   

15.
Deregulation of cell signaling pathways plays a crucial role in the development of tumors. The identification of such pathways requires effective analysis tools that facilitate the interpretation of expression differences. Here, we present a novel and highly efficient method for identifying deregulated subnetworks in a regulatory network. Given a score for each node that measures the degree of deregulation of the corresponding gene or protein, the algorithm computes the heaviest connected subnetwork of a specified size reachable from a designated root node. This root node can be interpreted as a molecular key player responsible for the observed deregulation. To demonstrate the potential of our approach, we analyzed three gene expression data sets. In one scenario, we compared expression profiles of non-malignant primary mammary epithelial cells derived from BRCA1 mutation carriers and of epithelial cells without BRCA1 mutation. Our results suggest that oxidative stress plays an important role in epithelial cells of BRCA1 mutation carriers and that the activation of stress proteins may result in avoidance of apoptosis leading to an increased overall survival of cells with genetic alterations. In summary, our approach opens new avenues for the elucidation of pathogenic mechanisms and for the detection of molecular key players.  相似文献   

16.
Yeh CW  Chu CP  Wu KR 《Bio Systems》2006,83(1):56-66
Binary optimization is a widely investigated topic in integer linear programming. This study proposes a DNA-based computing algorithm for solving the significantly large binary integer programming (BIP) problem. The proposed approach is based upon Adleman and Lipton's DNA operations to solve the BIP problem. The potential of DNA computation for the BIP problem is promising given the operational time complexity of O(nxk).  相似文献   

17.
18.
In this study, we develop an extended multi-objective mixed integer programming (EMOMIP) approach for water resources management under uncertainty, in which the parameters are fuzzy random variables while the decision variables are interval variables. Furthermore, some alternatives are considered to retrieve the difference between the quantities of promised water-allocation targets and the actual allocated water. Then, the proposed EMOMIP for the problem is solved by a new method using fuzzy random chance-constrained programming based on the idea of possibility theory. This method can satisfy both optimistic and pessimistic decision makers simultaneously. Finally, a real example is given to explain the proposed method.  相似文献   

19.
Incorporating spatial criteria in optimum reserve network selection   总被引:7,自引:0,他引:7  
Considering the spatial location of sites that are to be selected for inclusion in a protected reserve network may be necessary to facilitate dispersal and long-term persistence of species in the selected sites. This paper presents an integer programming (IP) approach to the reserve network selection problem where spatial considerations based on intersite distances are taken into account when selecting reserve sites. The objective is to reduce the fragmentation of preserved sites and design a compact reserve network. Two IP formulations are developed which minimize the sum of pairwise distances and the maximum intersite distance between all sites in the reserve network, respectively, while representing all species under consideration. This approach is applied to a pond invertebrate dataset consisting of 131 sites containing 256 species in Oxfordshire, UK. The results show that significant reductions in reserve fragmentation can be achieved, compared with spatially unrestricted optimum reserve selection, at the expense of a small loss in reserve efficiency.  相似文献   

20.
We study the problem of reconstructing haplotype configurations from genotypes on pedigree data with missing alleles under the Mendelian law of inheritance and the minimum-recombination principle, which is important for the construction of haplotype maps and genetic linkage/association analyses. Our previous results show that the problem of finding a minimum-recombinant haplotype configuration (MRHC) is in general NP-hard. This paper presents an effective integer linear programming (ILP) formulation of the MRHC problem with missing data and a branch-and-bound strategy that utilizes a partial order relationship and some other special relationships among variables to decide the branching order. Nontrivial lower and upper bounds on the optimal number of recombinants are introduced at each branching node to effectively prune the search tree. When multiple solutions exist, a best haplotype configuration is selected based on a maximum likelihood approach. The paper also shows for the first time how to incorporate marker interval distance into a rule-based haplotyping algorithm. Our results on simulated data show that the algorithm could recover haplotypes with 50 loci from a pedigree of size 29 in seconds on a Pentium IV computer. Its accuracy is more than 99.8% for data with no missing alleles and 98.3% for data with 20% missing alleles in terms of correctly recovered phase information at each marker locus. A comparison with a statistical approach SimWalk2 on simulated data shows that the ILP algorithm runs much faster than SimWalk2 and reports better or comparable haplotypes on average than the first and second runs of SimWalk2. As an application of the algorithm to real data, we present some test results on reconstructing haplotypes from a genome-scale SNP dataset consisting of 12 pedigrees that have 0.8% to 14.5% missing alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号