首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三磷酸腺苷结合盒转运体A1(ABCA1)具有介导细胞内脂质流出,维持细胞脂质稳态的功能.新生的ABCA1必须经过胞内运输和各种化学修饰等过程,最终成为具有功能的成熟转运体,才能行使其转运脂质的功能,因此,ABCA1在胞内的运输过程和正确质膜定位对其介导胆固醇流出的功能至关重要.目前ABCA1相关研究主要集中于脂质转运方面,并提出各种胆固醇流出机制的模型,如通道转运模型、蘑菇状突起模型和胞吞-胞吐转运模型等.最近研究显示,ABCA1还具有调节质膜脂筏结构、参与免疫和炎症调节等新功能.本文主要针对ABCA1的胞内运输过程以及各种功能做一综述,以期为动脉粥样硬化相关疾病提供新的治疗靶点和途径.  相似文献   

2.
3.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in exporting cholesterol from macrophages, a function relevant to its involvement in the prevention of atherosclerosis. Quercetin, one of flavonoids, has been described to reduce atherosclerotic lesion formation. This study is aimed to investigate the effect of quercetin on regulation of ABCA1 expression and to explore its underlying mechanisms in macrophages. The results show that quercetin markedly enhanced cholesterol efflux from macrophages in a concentration-dependent manner, which was associated with an increase in ABCA1 mRNA and protein expression. Remarkably, quercetin is able to stimulate the phosphorylation of p38 by up to 234-fold at 6 h via an activation of the transforming growth factor β-activated kinase 1 (TAK1) and mitogen-activated kinase kinase 3/6 (MKK3/6). Inhibition of p38 with a pharmacological inhibitor or small hairpin RNA (shRNA) suppressed the stimulatory effects of quercetin on ABCA1 expression and cholesterol efflux. Moreover, knockdown of p38 reduced quercetin-enhanced ABCA1 promoter activity and the binding of specificity protein 1 (Sp1) and liver X receptor α (LXRα) to the ABCA1 promoter using chromatin immunoprecipitation assays. These findings provide evidence that p38 signaling is essential for the regulation of quercetin-induced ABCA1 expression and cholesterol efflux in macrophages.  相似文献   

4.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

5.
ATP-binding cassette transporter A1 plays (ABCA1) a major role in reverse cholesterol transport, a process closely related to atherogenesis. In the thickening atherosclerotic lesions lipid loaded macrophages are exposed to regions of local hypoxia that may influence reverse cholesterol transport. Here we studied the effect of hypoxia on ABCA1 regulation and cholesterol efflux in human macrophages.We found that the hypoxia-inducible factor 1 (HIF-1) specifically binds to the HIF-1 response element of the ABCA1 promoter and the HIF-1 complex increases ABCA1 promoter activity along with ABCA1 expression. Primary human macrophages exposed to hypoxia or expressing constitutively active HIF-1alpha responded with a potent change in ABCA1 expression, which showed a strong correlation with HIF-1beta expression (r: 0.95–0.91). Moreover, ABCA1-mediated cholesterol efflux was also found to be regulated by HIF-1beta under hypoxia. In vivo, in macrophages prepared from human atherosclerotic lesions ABCA1 levels showed a strong correlation with HIF-1beta expression. This in vivo regulatory mechanism was confirmed in human pre-eclamptic placentas, a clinical condition with severe local hypoxia.These results demonstrate that HIF-1beta availability determines ABCA1 expression and cholesterol efflux in macrophages under hypoxia and may contribute to the interpersonal variability of atherosclerotic lesion progression.  相似文献   

6.
It is widely accepted that functional ATP-binding cassette transporter A1 (ABCA1) is critical for the formation of nascent high density lipoprotein particles. However, the cholesterol pool(s) and the cellular signaling processes utilized by the ABCA1-mediated pathway remain unclear. Sphingomyelin maintains a preferential interaction with cholesterol in membranes, and its catabolites, especially ceramide, are potent signaling molecules that could play a role in ABCA1 regulation or function. To study the potential role of ceramide in this process, we treated a variety of cell lines with 20 microM C2-ceramide and examined apolipoprotein-mediated cholesterol efflux to lipid-free apoA-I. We found that cell lines expressing ABCA1 displayed 2-3-fold increases in cholesterol efflux to apoA-I. Cell lines not expressing ABCA1 were unaffected by ceramide. We further characterized the cholesterol efflux effect in Chinese hamster ovary cells. Ceramide treatment did not cause significant cytotoxicity or apoptosis and did not affect cholesterol efflux to non-apolipoprotein acceptors. Raising endogenous ceramide levels increased cholesterol efflux to apoA-I. Using a cell surface biotinylation method, we found that the total cellular ABCA1 and that at the plasma membrane were increased with ceramide treatment. Also ceramide enhanced the binding of fluorescently labeled apoA-I to Chinese hamster ovary cells. These data suggest that ceramide may increase the plasma membrane content of ABCA1, leading to increased apoA-I binding and cholesterol efflux.  相似文献   

7.
8.
9.
ATP-binding cassette transporter 1 (ABCA1), the defective transporter in Tangier disease, binds and promotes cellular cholesterol and phospholipid efflux to apolipoprotein I (apoA-I). Based on a high degree of sequence homology between ABCA1 and ABCA7, a transporter of unknown function, we investigated the possibility that ABCA7 might be involved in apolipoprotein binding and lipid efflux. Similarly to cells expressing ABCA1, HEK293 cells overexpressing ABCA7 showed specific binding and cross-linking of lipid-poor apoA-I. ABCA7 expression increased cellular phosphatidylcholine and sphingomyelin efflux to apoA-I in a manner similar to ABCA1 but had no effect on cholesterol efflux. Western analysis showed a high protein level of ABCA7 in mouse spleen, lung, adrenal, and brain but low expression in liver. In contrast to ABCA1, ABCA7 showed moderate basal mRNA and protein levels in macrophages and lymphocytes but no induction by liver X receptor activation. These studies show that ABCA7 has the ability to bind apolipoproteins and promote efflux of cellular phospholipids without cholesterol, and they suggest a possible role of ABCA7 in cellular phospholipid metabolism in peripheral tissues.  相似文献   

10.
Zhao Y  Chen X  Yang H  Zhou L  Okoro EU  Guo Z 《PloS one》2011,6(7):e21453
Despite the well known importance of apolipoprotein (Apo) E in cholesterol efflux, the effect of ApoE on the expression of ATP-binding cassette transporter A1 (ABCA1) has never been investigated. The objective of this study was to determine the effect of ApoE on ApoB-carrying lipoprotein-induced expression of ABCA1, a protein that mediates cholesterol efflux. Our data demonstrate that ApoB-carrying lipoproteins obtained from both wild-type and ApoE knockout mice induced ApoAI-mediated cholesterol efflux in mouse macrophages, which was associated with an enhanced ABCA1 promoter activity, and an increased ABCA1 mRNA and protein expression. In addition, these lipoproteins increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter. However, all these inductions were significantly diminished in cells treated with ApoE-free lipoproteins, when compared to those treated with wild-type lipoproteins. Enrichment with human ApoE3 reversed the reduced inducibility of ApoE-free lipoproteins. Moreover, we observed that inhibition of Sp1 DNA-binding by mithramycin A diminished ABCA1 expression and ApoAI-mediated cholesterol efflux induced by ApoB-carrying lipoproteins, and that mutation of the Sp1-binding motif in the ABCA1 promoter region diminished ApoB-carrying lipoprotein-induced ABCA1 promoter activity. Collectively, these data suggest that ApoE associated with ApoB-carrying lipoproteins has an upregulatory role on ABCA1 expression, and that induction of Sp1 phosphorylation is a mechanism by which ApoE upregulates ABCA1 expression.  相似文献   

11.
12.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

13.
ATP binding cassette transporter A1 (ABCA1) mediates the transport of phospholipids and cholesterol from cells to lipid-poor HDL apolipoproteins. Cholesterol loading of cells induces ABCA1, implicating cholesterol as its major physiologic substrate. It is believed, however, that ABCA1 is primarily a phospholipid transporter and that cholesterol efflux occurs by diffusion to ABCA1-generated phospholipid-rich apolipoproteins. Here we show that overexpression of ABCA1 in baby hamster kidney cells in the absence of apolipoproteins redistributed membrane cholesterol to cell-surface domains accessible to treatment with the enzyme cholesterol oxidase. The cholesterol removed by apolipoprotein A-I (apoA-I), but not by HDL phospholipids, was derived exclusively from these domains. ABCA1 overexpression also increased cholesterol esterification, which was prevented by addition of apoA-I, suggesting that some of the cell-surface cholesterol not removed by apolipoproteins is transported to the intracellular esterifying enzyme acyl-CoA:cholesterol acyltransferase. ABCA1 expression was essential for cholesterol efflux even when apolipoproteins had already acquired phospholipids during prior exposure to ABCA1-expressing cells.These studies show that ABCA1 redistributes cholesterol to cell-surface domains, where it becomes accessible for removal by apolipoproteins, consistent with a direct role of ABCA1 in cholesterol transport.  相似文献   

14.
Diabetes and insulin resistance increase the risk of cardiovascular disease caused by atherosclerosis through mechanisms that are poorly understood. Lipid-loaded macrophages are key contributors to all stages of atherosclerosis. We have recently shown that diabetes associated with increased plasma lipids reduces cholesterol efflux and levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in mouse macrophages, which likely contributes to macrophage lipid accumulation in diabetes. Furthermore, we and others have shown that unsaturated fatty acids reduce ABCA1-mediated cholesterol efflux, and that this effect is mediated by the acyl-CoA derivatives of the fatty acids. We therefore investigated whether acyl-CoA synthetase 1 (ACSL1), a key enzyme mediating acyl-CoA synthesis in macrophages, could directly influence ABCA1 levels and cholesterol efflux in these cells. Mouse macrophages deficient in ACSL1 exhibited reduced sensitivity to oleate- and linoleate-mediated ABCA1 degradation, which resulted in increased ABCA1 levels and increased apolipoprotein A-I-dependent cholesterol efflux in the presence of these fatty acids, as compared with wildtype mouse macrophages. Conversely, overexpression of ACSL1 resulted in reduced ABCA1 levels and reduced cholesterol efflux in the presence of unsaturated fatty acids. Thus, the reduced ABCA1 and cholesterol efflux in macrophages subjected to conditions of diabetes and elevated fatty load may, at least in part, be mediated by ACSL1. These observations raise the possibility that ABCA1 levels could be increased by inhibition of acyl-CoA synthetase activity in vivo. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

15.
三磷酸腺苷结合盒转运体A1(ABCA1)是体内胆固醇逆向转运的关键环节.对氧磷是广泛使用的有机磷农药的活性代谢产物.研究发现,对氧磷能增加巨噬细胞中胆固醇的堆积,但具体机制还不清楚.以RAW264.7巨噬细胞源性泡沫细胞为研究对象,观察对氧磷对RAW264.7巨噬细胞源性泡沫细胞ABCA1表达和胆固醇流出的影响并探讨其机制.结果显示,对氧磷以时间和剂量依赖的方式增加RAW264.7巨噬细胞源性泡沫细胞中总胆固醇、游离胆固醇和胆固醇酯水平,降低ABCA1表达和胆固醇流出,同时对氧磷降低细胞中环磷酸腺苷(cAMP)的水平及腺苷酸环化酶(AC)的活性和增加磷酸二酯酶(PDE)的活性,而cAMP的类似物双丁酰环腺苷酸(dBcAMP)能够阻断对氧磷降低ABCA1表达和部分阻断对氧磷降低胆固醇流出,对氧磷导致的cAMP水平的降低也可被AC激动剂福斯高林(Forskolin)和PDE抑制剂3-异丁基-1-甲基黄嘌呤(IBMX)所阻断.以上结果表明,对氧磷通过cAMP信号通路下调RAW264.7巨噬细胞源性泡沫细胞ABCA1的表达,降低细胞内胆固醇流出和增加细胞内胆固醇堆积.  相似文献   

16.
17.
Prior studies provide data supporting the notion that ATP binding cassette transporter A1 (ABCA1) promotes lipid efflux to extracellular acceptors in a two-step process: first, ABCA1 mediates phospholipid efflux to an apolipoprotein, and second, this apolipoprotein-phospholipid complex accepts free cholesterol in an ABCA1-independent manner. In the current study using RAW264.7 cells, ABCA1-mediated free cholesterol and phospholipid efflux to apolipoprotein A-I (apoA-I) were tightly coupled to each other both temporally and after treatment with ABCA1 inhibitors. The time course and temperature dependence of ABCA1-mediated lipid efflux to apoA-I support a role for endocytosis in this process. Cyclodextrin treatment of RAW264.7 cells partially inhibited 8Br-cAMP-induced efflux of free cholesterol and phospholipid to apoA-I. ABCA1-expressing cells are more sensitive to cell damage by high-dose cyclodextrin and vanadate, leading to increased lactate dehydrogenase leakage and phospholipid release even in the absence of the acceptor apoA-I. Finally, we could not reproduce a two-step effect on lipid efflux using conditioned medium from ABCA1-expressing cells pretreated with cyclodextrin.  相似文献   

18.
ATP-binding cassette transporter A1 (ABCA1) was recently recognized as the mutant molecule responsible for Tangier disease with low HDL levels, accumulation of cholesteryl esters in tissues, and increased risk of cardiovascular disease. Extensive studies for the past 2 years have recognized the critical role of ABCA1 in cholesterol and phospholipid trafficking. Since the removal of cholesterol from tissues is a key step in the prevention of atherosclerosis, significant attention has been focused on this molecule. Natural ABCA1 mutations in Tangier disease (TD) patients and WHAM chickens together with induced mutation in ABCA1 knock-out mice unequivocally established the important role of ABCA1 in maintaining circulating HDL levels and promoting cholesterol efflux from the arterial wall. Mice lacking ABCA1 showed similar phenotypes observed in Tangier disease patients with low levels of HDL. Further understanding of the roles of ABCA1 in lipid transport and atherosclerosis became clear from studies with ABCA1 transgenic mice. These mice showed enhanced cholesterol efflux from macrophages and reduced atherosclerotic lesion formation. The promoter of the ABCA1 gene has been mapped to a large extent, with the exception of cAMP response element. The present review summarizes recent developments on the role of ABCA1 in cholesterol efflux and prevention of atherosclerosis. Given the antiatherogenic properties of ABCA1, this molecule can serve as an appropriate target for developing drugs to treat individuals with low levels of HDL.  相似文献   

19.
PURPOSE OF REVIEW: The appearance of scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) in macrophages and liver implicates these transporters in different stages of reverse cholesterol transport. This review focuses on the role of SR-BI and ABCA1 in reverse cholesterol transport in the context of atherosclerotic lesion development. RECENT FINDINGS: Recent studies indicate that hepatic expression of ABCA1 and SR-BI is important for the generation of nascent HDL and the delivery of HDL cholesteryl esters to the liver, respectively. Although macrophage SR-BI and ABCA1 do not contribute significantly to circulating HDL levels, the perpetual cycle of HDL lipidation and delipidation by the liver ensures the availability of acceptors for cholesterol efflux that maintain cholesterol homeostasis in arterial macrophages, thereby reducing atherogenesis. In addition to its established role in the selective uptake of HDL cholesteryl esters, there is now evidence that hepatic SR-BI facilitates postprandial lipid metabolism, and that hepatic secretion of VLDL is dependent on ABCA1-mediated nascent HDL formation. Thus, remnant and HDL metabolism are more intimately intertwined in hepatic lipid metabolism than has previously been appreciated. SUMMARY: Recent advances in the understanding of the role of ABCA1 and SR-BI in HDL metabolism and their atheroprotective properties indicate the significant potential of modulating ABCA1 and SR-BI expression in both arterial wall macrophages and the liver for the treatment of atherosclerotic coronary artery disease.  相似文献   

20.
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) performs incompletely understood biochemical functions that affect pathogenesis of Alzheimer's disease. ABCA7 is most similar in primary structure to ABCA1, the protein that mediates cell lipid efflux and formation of high-density lipoprotein (HDL). Lipid metabolic labeling/tracer efflux assays were employed to investigate lipid efflux in BHK-ABCA7(low expression), BHK-ABCA7(high expression) and BHK-ABCA1 cells. Shotgun lipid mass spectrometry was used to determine lipid composition of HDL synthesized by BHK-ABCA7 and BHK-ABCA1 cells. BHK-ABCA7(low) cells exhibited significant efflux only of choline-phospholipid and phosphatidylinositol. BHK-ABCA7(high) cells had significant cholesterol and choline-phospholipid efflux to apolipoprotein (apo) A-I, apo E, the 18A peptide, HDL, plasma and cerebrospinal fluid and significant efflux of sphingosine-lipid, serine-lipid (which is composed of phosphatidylserine and phosphatidylethanolamine in BHK cells) and phosphatidylinositol to apo A-I. In efflux assays to apo A-I, after adjustment to choline-phospholipid, ABCA7-mediated efflux removed ~4 times more serine-lipid and phosphatidylinositol than ABCA1-mediated efflux, while ABCA1-mediated efflux removed ~3 times more cholesterol than ABCA7-mediated efflux. Shotgun lipidomic analysis revealed that ABCA7-HDL had ~20 mol% less phosphatidylcholine and 3–5 times more serine-lipid and phosphatidylinositol than ABCA1-HDL, while ABCA1-HDL contained only ~6 mol% (or ~1.1 times) more cholesterol than ABCA7-HDL. The discrepancy between the tracer efflux assays and shotgun lipidomics with respect to cholesterol may be explained by an underestimate of ABCA7-mediated cholesterol efflux in the former approach. Overall, these results suggest that ABCA7 lacks specificity for phosphatidylcholine and releases significantly but not dramatically less cholesterol in comparison with ABCA1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号