首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[目的]酿酒酵母的嗜果糖性是葡萄酒酵母选育工作的一项重要内容.建立评价菌体发酵果糖能力的方法,是葡萄酒酿酒酵母嗜果糖性研究的基础.[方法]以3株不同果糖发酵能力的酵母菌为研究对象,考察菌体在模拟葡萄汁培养基条件下,发酵情况与单糖利用之间的关系;并通过数学方程拟合单糖动力发酵曲线,得到发酵持续时间、葡萄糖浓度拟为0时的果糖浓度、果糖与葡萄糖曲线面积的差值等参数.[结果]这些参数可以反应出菌体的发酵速率和嗜果糖性.其中后两个参数能显著将3个菌株的嗜果糖特性区分开.[结论]为高果糖利周优良葡萄酒酿酒酵母菌株的筛选和构建,提供了较为全面、客观和有效的评价方法.  相似文献   

2.
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase.  相似文献   

3.
Tao X  Zheng D  Liu T  Wang P  Zhao W  Zhu M  Jiang X  Zhao Y  Wu X 《PloS one》2012,7(2):e31235
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.  相似文献   

4.
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as ‘genome renewal’.  相似文献   

5.
While unfermented grape must contains approximately equal amounts of the two hexoses glucose and fructose, wine producers worldwide often have to contend with high residual fructose levels (>2 gl(-1)) that may account for undesirable sweetness in finished dry wine. Here, we investigate the fermentation kinetics of glucose and fructose and the influence of certain environmental parameters on hexose utilisation by wine yeast. Seventeen Saccharomyces cerevisiae strains, including commercial wine yeast strains, were evaluated in laboratory-scale wine fermentations using natural Colombard grape must that contained similar amounts of glucose and fructose (approximately 110 gl(-1) each). All strains showed preference for glucose, but to varying degrees. The discrepancy between glucose and fructose utilisation increased during the course of fermentation in a strain-dependent manner. We ranked the S. cerevisiae strains according to their rate of increase in GF discrepancy and we showed that this rate of increase is not correlated with the fermentation capacity of the strains. We also investigated the effect of ethanol and nitrogen addition on hexose utilisation during wine fermentation in both natural and synthetic grape must. Addition of ethanol had a stronger inhibitory effect on fructose than on glucose utilisation. Supplementation of must with assimilable nitrogen stimulated fructose utilisation more than glucose utilisation. These results show that the discrepancy between glucose and fructose utilisation during fermentation is not a fixed parameter but is dependent on the inherent properties of the yeast strain and on the external conditions.  相似文献   

6.
7.
A survey of the genetic polymorphisms produced by distinct methods was performed in 23 commercial winery yeast strains. Microsatellite typing, using six different loci, an optimized interdelta sequence analysis and restriction fragment length polymorphism of mitochondrial DNA generated by the enzyme HinfI had the same discriminatory power: among the 23 commercial yeast strains, 21 distinct patterns were obtained. Karyotype analysis gave 22 patterns, thereby allowing the discrimination of one of the three strains that were not distinguished by the other methods. Due to the equivalence of the results obtained in this survey, any of the methods can be applied at the industrial scale.  相似文献   

8.
9.
Alcoholic fermentation is an essential step in wine production that is usually conducted by yeasts belonging to the species Saccharomyces cerevisiae. The ability to carry out vinification is largely influenced by the response of yeast cells to the stress conditions that affect them during this process. In this work, we present a systematic analysis of the resistance of 14 commercial S. cerevisiae wine yeast strains to heat shock, ethanol, oxidative, osmotic and glucose starvation stresses. Significant differences were found between these yeast strains under certain severe conditions, Vitilevure Pris Mouse and Lalvin T73 being the most resistant strains, while Fermiblanc arom SM102 and UCLM S235 were the most sensitive ones. Induction of the expression of the HSP12 and HSP104 genes was analyzed. These genes are reported to be involved in the tolerance to several stress conditions in laboratory yeast strains. Our results indicate that each commercial strain shows a unique pattern of gene expression, and no clear correlation between the induction levels of either gene and stress resistance under the conditions tested was found. However, the increase in mRNA levels in both genes under heat shock indicates that the molecular mechanisms involved in the regulation of their expression by stress function in all of the strains.  相似文献   

10.
Yeast strains capable of fermenting starch and dextrin to ethanol were isolated from samples collected from Brazilian factories in which cassava flour is produced. Considerable alcohol production was observed for all the strains selected. One strain (DI-10) fermented starch rapidly and secreted 5 times as much amylolytic enzyme than that observed for Schwanniomyces alluvius UCD 54-83. This strain and three other similar isolates were classified as Saccharomyces cerevisiae var. diastaticus by morphological and physiological characteristics and molecular taxonomy.  相似文献   

11.
AIMS: To differentiate nine industrial wine strains of Saccharomyces cerevisiae using microsatellite (simple sequence repeats, SSR) markers. METHODS AND RESULTS: Six of the strains were indigenous yeasts currently used as high-density starter monocultures by the Uruguayan wine industry. Unequivocal differentiation of these six native strains and three commercial S. cerevisiae wine strains was achieved by PCR amplification and polymorphism analysis of loci containing microsatellite markers. CONCLUSION: We recommend the use of this reproducible and simple molecular method to routinely discriminate wine yeast strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Microsatellites are superior to other methods for typing yeasts because the results can be exchanged as quantitative data. Knowledge of the frequencies of the alleles for different SSR markers will eventually lead to an accurate typing method to identify industrial wine yeast strains.  相似文献   

12.
New yeast strains for alcoholic fermentation at higher sugar concentration   总被引:1,自引:0,他引:1  
Summary New yeast strains for alcoholic fermentation were isolated from samples collected from Brazilian alcohol factories at the end of the sugar cane crop season. They were selected by their capacity of fermenting concentrated sugar cane syrup as well as high sucrose concentrations in synthetic medium with a conversion efficiency of 89–92%. The strains were identified asSaccharomyces cerevisiae.  相似文献   

13.
The effect of killer strains of Saccharomyces cerevisiae on the growth of sensitive strains during must fermentation was studied by using a new method to monitor yeast populations. The capability of killer yeast strains to eliminate sensitive strains depends on the initial proportion of killer yeasts, the susceptibility of sensitive strains, and the treatment of the must. In sterile filtered must, an initial proportion of 2-6% of killer yeasts was responsible for protracted fermentation and suppression of isogenic sensitive strains. A more variable initial proportion was needed to get the same effect with non-isogenic strains. The suspended solids that remain in the must after cold-settling decreased killer toxin effect. The addition of bentonite to the must avoided protracted fermentation and the suppression of sensitive strains; however, the addition of yeast dietary nutrients with yeast cell walls did not, although it decreased fermentation lag.  相似文献   

14.
AIMS: Use of microsatellite PCR to monitor populations of Saccharomyces cerevisiae strains during fermentation of grape juice. METHOD AND RESULTS: Six commercial wine strains of S. cerevisiae were screened for polymorphism at the SC8132X locus using a modified rapid PCR identification technique. The strains formed four distinct polymorphic groups that could be readily distinguished from one another. Fermentations inoculated with mixtures of three strains polymorphic at the SC8132X locus were monitored until sugar utilization was complete, and all exhibited a changing population structure throughout the fermentation. CONCLUSIONS: Rapid population quantification demonstrated that wine fermentations are dynamic and do not necessarily reflect the initial yeast population structure. One or more yeast strains were found to dominate at different stages of the fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The population structure of S. cerevisiae during mixed culture wine fermentation is dynamic and could modify the chemical composition and flavour profile of wine.  相似文献   

15.
16.
The inoculation of active dry wine yeast (ADWY) is one of the most common practices in winemaking. This inoculation exposes the yeast cells to strong osmotic, acidic and thermal stresses, and adaptation to the new medium is crucial for successful fermentation. We have analysed the changes that occur in the ADWY protein profile in the first hours after inoculation under enological-like conditions at a low temperature. Protein changes mainly included enzymes of the nitrogen and carbon metabolism and proteins related to the cellular stress response. Most of the enzymes of the lower part of the glycolysis showed an increase in their concentration 4 and 24 h after inoculation, indicating an increase in glycolytic flux and in ATP production. However, the shift from respiration to fermentation was not immediate in the inoculation because some mitochondrial proteins involved in oxidative metabolism were induced in the first hours after inoculation. Inoculation in this fresh medium also reduced the cellular concentration of stress proteins produced during industrial production of the ADWY. The only exception was Cys3p, which might be involved in glutathione synthesis as a response to oxidative stress. A better understanding of the yeast stress response to rehydration and inoculation will lead to improvements in the handling efficiency of ADWY in winemaking and presumably to better control of fermentation startup.  相似文献   

17.
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0–12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.  相似文献   

18.
Microbial adhesion is a field of recognized relevance and, as such, an impressive array of tools has been developed to understand its molecular mechanisms and ultimately for its quantification. Some of the major limitations found within these methodologies concern the incubation time, the small number of cells analyzed, and the operator's subjectivity. To overcome these aspects, we have developed a quantitative method to measure yeast cells' adhesion through flow cytometry. In this methodology, a suspension of yeast cells is mixed with green fluorescent polystyrene microspheres (uncoated or coated with host proteins). Within 2 h, an adhesion profile is obtained based on two parameters: percentage and cells-microsphere population's distribution pattern. This flow cytometry protocol represents a useful tool to quantify yeast adhesion to different substrata in a large scale, providing manifold data in a speedy and informative manner.  相似文献   

19.
从成熟的沙棘果皮中筛选得到9株酵母茵,通过产气性能、产酒精能力和发酵力测试试验及对发酵所得的沙棘果酒的感官评价,选出R1为最佳的沙棘果酒酿酒用茵株.该茵株适合在酸度较高的沙棘果汁中进行正常的酒精发酵,起酵快、发酵能力强,发酵所得沙棘果酒品质优,而且酒体澄清透明、色泽红润,具有沙棘果酒的典型风味,适用于果酒生产以及下一步...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号