首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exit of low‐density lipoprotein derived cholesterol (LDL‐C) from late endosomes (LE)/lysosomes (Ly) is mediated by Niemann–Pick C1 (NPC1), a multipass integral membrane protein on the limiting membranes of LE/Ly, and by NPC2, a cholesterol‐binding protein in the lumen of LE/Ly. NPC2 delivers cholesterol to the N‐terminal domain of NPC1, which is believed to insert cholesterol into the limiting membrane for subsequent transport to other subcellular organelles. Few cytoplasmic factors have been identified to govern cholesterol efflux from LE/Ly, and much less is known about the underlying molecular mechanisms. Here we establish VPS4, an AAA ATPase that has a well‐established role in disassembling the ESCRT (endosomal sorting complex required for transport)‐III polymer, as an important regulator of endosomal cholesterol transport. Knocking down VPS4 in HeLa cells resulted in prominent accumulation of LDL‐C in LE/Ly, and disrupted cholesterol homeostatic responses at the endoplasmic reticulum. The level and localization of NPC1 and NPC2 appeared to be normal in VPS4 knockdown cells. Importantly, depleting any of the ESCRT‐III components did not exert a significant effect on endosomal cholesterol transport. Our results thus identify an important cytoplasmic regulator of endosomal cholesterol trafficking and represent the first functional separation of VPS4 from ESCRT‐III.  相似文献   

2.
The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein-2 (LAMP-2) and LAMP-1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP-1 and LAMP-2 (LAMP−/−), low-density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild-type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP-2 deficient liver and that overexpression of LAMP-2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP-2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP-2, but not by LAMP-1. The LAMP-2 luminal domain, the membrane-proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP-2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone-mediated autophagy function of LAMP-2.  相似文献   

3.
The protein composition of human intestinal lavage fluids was analysed by electroimmunoassay. In addition to secretory immunoglobulin A and other components that were antigenically related to serum proteins, a number of gut-specific proteins were detected. One of these was found to exhibit the capacity of binding sodium deoxycholate and cholesterol. After isolation of this cholesterol-binding protein from intestinal fluids, immunohistochemical studies utilizing a specific antiserum indicated the pancreas to be the organ of its synthesis. The protein was subsequently purified from necrobiotic pancreas tissues and was found to be composed of a single polypeptide chain with a mol. wt. of 28 000 and an isoelectric point of pH4.9. The deoxycholate binding capacity determined by gel chromatography in the presence of [3H]deoxycholate was calculated to be approx. 24 mol of deoxycholate/mol of protein. In the intestinal fluids the protein appeared to be present in firm association with cholesterol, phospholipids, triacylglycerols and bile salts as a macromolecular protein-lipid complex. The possibility is raised that the pancreas-derived, cholesterol-binding protein may fulfil a function as an intestinal 'lipoprotein'.  相似文献   

4.
Steroidogenesis depends on the delivery of free cholesterol to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). Mutations in the StAR gene leads to proteins with limited cholesterol-binding capacity. This gives rise to the accumulation of cytoplasmic cholesterol, a deficit in steroid hormone production and to the medical condition of lipoid congenital adrenal hyperplasia. A detailed understanding of the mechanism of the specific binding of free cholesterol by StAR would be a critical asset in understanding the molecular origin of this disease. Previous studies have led to the proposal that the C-terminal alpha-helix 4 of StAR was undergoing a folding/unfolding transition. This transition is thought to gate the cholesterol-binding site. Moreover, a conserved salt bridge (Glu169-Arg188) in the cholesterol-binding site is also proposed to be critical to the binding process. Interestingly, some of the documented clinical mutations occur at this salt bridge (E169G, E169K and R188C) and in the C-terminal alpha-helix 4 (L275P). In the present study, using rationalized mutagenesis, activity assays, CD, thermodynamic studies and molecular modelling, we characterized the alpha-helix 4 mutations L271N and L275P, as well as the salt bridge double mutant E169M/R188M. The results provide experimental validation for the gating mechanism of the cholesterol-binding site by the C-terminal alpha-helix and the importance of the salt bridge in the binding mechanism. Altogether, our results offer a molecular framework for understanding the impact of clinical mutations on the reduction of the binding affinity of StAR for free cholesterol.  相似文献   

5.
The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2−/− fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment.  相似文献   

6.
Kyle B. Peake 《FEBS letters》2010,584(13):2731-2739
Pathways of intracellular cholesterol trafficking are poorly understood at the molecular level. Mutations in Niemann-Pick C (NPC) proteins, NPC1 and NPC2, however, have led to insights into the mechanism by which endocytosed cholesterol is exported from late endosomes/lysosomes (LE/L). Mutations in NPC1, a multi-spanning membrane protein of LE/L, or mutations in NPC2, a soluble luminal protein of LE/L, cause the neurodegenerative disorder NPC disease. This review focuses on data supporting a model in which movement of cholesterol out of LE/L is mediated by the sequential action of the two NPC proteins. We also discuss potential therapies for NPC disease, including evidence that treatment of NPC-deficient mice with the cholesterol-binding compound, cyclodextrin, markedly attenuates neurodegeneration, and increases life-span, of NPC1-deficient mice.  相似文献   

7.
Cholesterol is an essential lipid in eukaryotic cells and is present in membranes of all intracellular compartments. A major source for cellular cholesterol is internalized lipoprotein particles that are transported toward acidic late endosomes (LE) and lysosomes. Here the lipoprotein particles are hydrolyzed, and free cholesterol is redistributed to other organelles. The LE can contain over half of the cellular cholesterol and, as a major sorting station, can contain many cholesterol-binding proteins from the ABCA, STARD, and ORP families. Here, we show that metastatic lymph node 64 (MLN64, STARD3) and oxysterol-binding protein-related protein 1L (ORP1L) define two subpopulations of LE. MLN64 is present on a LE containing the cholesterol transporter ABCA3, whereas ORP1L localizes to another population of LE containing Niemann Pick type C1 (NPC1), a cholesterol exporter. Endocytosed cargo passes through MLN64/ABCA3-positive compartments before it reaches ORP1L/NPC1-positive LE. The MLN64/ABCA3 compartments cycle between LE and plasma membrane and frequently contact “later” ORP1L/NPC1-containing LE. We propose two stages of cholesterol handling in late endosomal compartments: first, cholesterol enters MLN64/ABCA3-positive compartments from where it can be recycled to the plasma membrane, and later, cholesterol enters ORP1L/NPC1 endosomes that mediate cholesterol export to the endoplasmic reticulum.  相似文献   

8.
There is much evidence to indicate that cholesterol forms lateral membrane microdomains (rafts), and to suggest their important role in cellular signaling. However, no probe has been produced to analyze cholesterol behavior, especially cholesterol movement in rafts, in real time. To obtain a potent tool for analyzing cholesterol dynamics in rafts, we prepared and characterized several truncated fragments of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, whose chemically modified form has been recently shown to bind selectively to rafts. BIAcore and structural analyses demonstrate that the C-terminal domain (domain 4) of the toxin is the smallest functional unit that has the same cholesterol-binding activity as the full-size toxin with structural stability. Cell membrane-bound recombinant domain 4 was detected in the floating low-density fractions and was found to be cofractionated with the raft-associated protein Lck, indicating that recombinant domain 4 also binds selectively to cholesterol-rich rafts. Furthermore, an enhanced green fluorescent protein-domain 4 fusion protein stains membrane surfaces in a cholesterol-dependent manner in living cells. Therefore, domain 4 of theta-toxin is an essential cholesterol-binding unit targeting to cholesterol in membrane rafts, providing a very useful tool for further studies on lipid rafts on cell surfaces and inside cells.  相似文献   

9.
Mammalian cells acquire most exogenous cholesterol through receptor‐mediated endocytosis of low‐density lipoproteins (LDLs). After internalization, LDL cholesteryl esters are hydrolyzed to release free cholesterol, which then translocates to late endosomes (LEs)/lysosomes (LYs) and incorporates into the membranes by co‐ordinated actions of Niemann‐Pick type C (NPC) 1 and NPC2 proteins. However, how cholesterol exits LEs/LYs and moves to other organelles remain largely unclear. Growing evidence has suggested that nonvesicular transport is critically involved in the post‐endosomal cholesterol trafficking. Numerous sterol‐transfer proteins (STPs) have been identified to mediate directional cholesterol transfer at membrane contact sites (MCSs) formed between 2 closely apposed organelles. In addition, a recent study reveals that lysosome‐peroxisome membrane contact (LPMC) established by a non‐STP synaptotagmin VII and a specific phospholipid phosphatidylinositol 4,5‐bisphosphate also serves as a novel and important path for LDL‐cholesterol trafficking. These findings highlight an essential role of MCSs in intracellular cholesterol transport, and further work is needed to unveil how various routes are regulated and integrated to maintain proper cholesterol distribution and homeostasis in eukaryotic cells.   相似文献   

10.
The steroidogenic acute regulatory (StAR)-related lipid transfer (START) domains are found in a wide range of proteins involved in intracellular trafficking of cholesterol and other lipids. Among the START proteins are the StAR protein itself (STARD1) and the closely related MLN64 protein (STARD3), which both function in cholesterol movement. We compared the cholesterol-binding properties of these two START domain proteins. Cholesterol stabilized STARD3-START against trypsin-catalyzed degradation, whereas cholesterol had no protective effect on STARD1-START. [(3)H]Azocholestanol predominantly labeled a 6.2 kDa fragment of STARD1-START comprising amino acids 83-140, which contains residues proposed to interact with cholesterol in a hydrophobic cavity. Photoaffinity labeling studies suggest that cholesterol preferentially interacts with one side wall of this cavity. In contrast, [(3)H]azocholestanol was distributed more or less equally among the polypeptides of STARD3-START. Overall, our results provide evidence for differential cholesterol binding of the two most closely related START domain proteins STARD1 and STARD3.  相似文献   

11.
1. The amount of apolipoprotein B (apo B) was measured using slit-immunoblotting in 20 specimens of radicular cyst fluids. Apo B was detected in all the cyst fluids with varying amounts. 2. Relationship between the amounts of apo B and free cholesterol or activity of heat-stable cholesterol-binding protein (HCBP) were examined. The amount of apo B was correlated well with the activity of HCBP (n = 20, r = 0.72, P less than 0.01) and with the amount of free cholesterol (n = 20, r = 0.45, P less than 0.05). 3. Anti-human apo B antibody inhibited cholesterol-binding activity in radicular cyst fluid. 4. When human-serum was chromatographed on a HPLC ion-exchange column, both cholesterol-binding activity and apo B had exactly the same retention time. 5. These results suggest that HCBP originates from beta-lipoprotein, and beta-lipoprotein may have an important role in cholesterol accumulation on radicular cysts.  相似文献   

12.
13.
Mitochondrial cholesterol is maintained within a narrow range to regulate steroid and oxysterol synthesis and to ensure mitochondrial function. Mitochondria acquire cholesterol through several pathways from different cellular pools. Here we have characterized mitochondrial import of endosomal cholesterol using Chinese hamster ovary cells expressing a CYP11A1 fusion protein that converts cholesterol to pregnenolone at the mitochondrial inner membrane. RNA interference-mediated depletion of the voltage-dependent anion channel 1 in the mitochondrial outer membrane or of Niemann-Pick Type C2 (NPC2) in the endosome lumen decreased arrival of cholesterol at the mitochondrial inner membrane. Expression of NPC2 mutants unable to transfer cholesterol to NPC1 still restored mitochondrial cholesterol import in NPC2-depleted cells. Transport assays in semi-permeabilized cells showed nonvesicular cholesterol trafficking directly from endosomes to mitochondria that did not require cytosolic transport proteins but that was reduced in the absence of NPC2. Our findings indicate that NPC2 delivers cholesterol to the perimeter membrane of late endosomes, where it becomes available for transport to mitochondria without requiring NPC1.  相似文献   

14.
Du X  Kazim AS  Brown AJ  Yang H 《Cell reports》2012,1(1):29-35
The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.  相似文献   

15.
Here, to study lipid-protein interactions that contribute to the biogenesis of regulated secretory vesicles, we have developed new approaches by which to label proteins in vivo, using photoactivatable cholesterol and glycerophospholipids. We identify synaptophysin as a major specifically cholesterol-binding protein in PC12 cells and brain synaptic vesicles. Limited cholesterol depletion, which has little effect on total endocytic activity, blocks the biogenesis of synaptic-like microvesicles (SLMVs) from the plasma membrane. We propose that specific interactions between cholesterol and SLMV membrane proteins, such as synaptophysin, contribute to both the segregation of SLMV membrane constituents from plasma-membrane constituents, and the induction of synaptic-vesicle curvature.  相似文献   

16.
Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5(-/-)) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5(-/-) mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.  相似文献   

17.
The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.  相似文献   

18.
MLN64 is a late endosomal cholesterol-binding membrane protein of an unknown function. Here, we show that MLN64 depletion results in the dispersion of late endocytic organelles to the cell periphery similarly as upon pharmacological actin disruption. The dispersed organelles in MLN64 knockdown cells exhibited decreased association with actin and the Arp2/3 complex subunit p34-Arc. MLN64 depletion was accompanied by impaired fusion of late endocytic organelles and delayed cargo degradation. MLN64 overexpression increased the number of actin and p34-Arc-positive patches on late endosomes, enhanced the fusion of late endocytic organelles in an actin-dependent manner, and stimulated the deposition of sterol in late endosomes harboring the protein. Overexpression of wild-type MLN64 was capable of rescuing the endosome dispersion in MLN64-depleted cells, whereas mutants of MLN64 defective in cholesterol binding were not, suggesting a functional connection between MLN64-mediated sterol transfer and actin-dependent late endosome dynamics. We propose that local sterol enrichment by MLN64 in the late endosomal membranes facilitates their association with actin, thereby governing actin-dependent fusion and degradative activity of late endocytic organelles.  相似文献   

19.
MLN64 is an integral membrane protein localized to the late endosome and plasma membrane that is thought to function as a mediator of cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria. The protein consists of two distinct domains: an N-terminal membrane-spanning domain that shares homology with the MENTHO protein and a C-terminal steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain that binds cholesterol. To further characterize the MLN64 protein, full-length and truncated proteins were overexpressed in cells and the effects on MLN64 trafficking and endosomal morphology were observed. To gain insight into MLN64 function, affinity chromatography and mass spectrometric techniques were used to identify potential MLN64 interacting partners. Of the 15 candidate proteins identified, 14-3-3 was chosen for further characterization. We show that MLN64 interacts with 14-3-3 in vitro as well as in vivo and that the strength of the interaction is dependent on the 14-3-3 isoform. Furthermore, blocking the interaction through the use of a 14-3-3 antagonist or MLN64 mutagenesis delays the trafficking of MLN64 to the late endosome and also results in the dispersal of endocytic vesicles to the cell periphery. Taken together, these studies have determined that MLN64 is a novel 14-3-3 binding protein and indicate that 14-3-3 plays a role in the endosomal trafficking of MLN64. Furthermore, these studies suggest that 14-3-3 may be the link by which MLN64 exerts its effects on the actin-mediated endosome dynamics.  相似文献   

20.
Annexin 2 is a Ca2+- and phospholipid-binding protein previously identified on endosomal membranes and the plasma membrane. Inferred from this location and its stimulatory effect on membrane transport annexin 2 has been proposed to play a role in the structural organization and dynamics of endosomal membranes. Validation of this view requires a detailed analysis of the distribution of annexin 2 over the endosomal compartment and a characterization of the parameters governing this distribution. Towards this end we have devised an immunoisolation protocol to purify annexin 2-positive membrane vesicles from subcellular fractions of BHK cells containing early endosomes. We show that this approach leads to the isolation of intact endosomal vesicles containing internalized fluid-phase marker and that the immunoisolated membranes are positive for the transferrin receptor and Rab4 but not for the early endosomal antigen EEA1. A distinct and non-uniform distribution of annexin 2 over the early endosomal compartment is also observed in immunoelectron microscopy analyses of whole-mount specimens of BHK cells. Annexin 2 antibodies labeled transferrin receptor-containing tubular early endosomal structures, but not EEAl-positive endosomal vacuoles. We also observed that the Ca2+-independent association of annexin 2 with endosomal membranes was disrupted by the cholesterol-binding glycerid saponin, while Ca2+ could trigger annexin 2 binding to saponin-treated endosomal membranes. Thus, either Ca2+- or cholesterol-stabilized membrane domains are required for the binding of annexin 2 to endosomes suggesting that both factors may regulate this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号