首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

2.
Ca(2+) release from internal stores (sarcoplasmic reticulum or SR) in smooth muscles is initiated either via pharmaco-mechanical coupling due to the action of an agonist and involving IP3 receptors, or via excitation-contraction coupling, mostly involving L-type calcium channels in the plasmalemma (DHPRs), and ryanodine receptors (RyRs), or Ca(2+) release channels of the SR. This work focuses attention on the structural basis for the coupling between DHPRs and RyRs in phasic smooth muscle cells of the guinea-pig urinary bladder. Immunolabeling shows that two proteins of the SR: calsequestrin and the RyR, and one protein the plasmalemma, the L-type channel or DHPR, are colocalized with each other within numerous, peripherally located sites located within the caveolar domains. Electron microscopy images from thin sections and freeze-fracture replicas identify feet in small peripherally located SR vesicles containing calsequestrin and distinctive large particles clustered within small membrane areas. Both feet and particle clusters are located within caveolar domains. Correspondence between the location of feet and particle clusters and of RyR- and DHPR-positive foci allows the conclusion that calsequestrin, RyRs, and L-type Ca(2+) channels are associated with peripheral couplings, or Ca(2+) release units, constituting the key machinery involved in excitation-contraction coupling. Structural analogies between smooth and cardiac muscle excitation-contraction coupling complexes suggest a common basic mechanism of action.  相似文献   

3.
The phasic contraction to phenylephrine of the rat isolated portal vein was investigated using functional studies. Phasic contractions to phenylephrine and caffeine could be produced after several minutes in Ca(2+)-free Krebs solution, which were inhibited by cyclopiazonic acid or ryanodine. The phenylephrine and caffeine contractions were abolished, however, within 10 min in Ca(2+)-free Krebs solution and by nifedipine. This indicated the Ca(2+) stores were depleted in the absence of Ca(2+) influx through voltage-gated channels. The phasic contraction to phenylephrine was also abolished by niflumic acid even in Ca(2+)-free Krebs solution. This showed that the response depended on intracellular Ca(2+) release stimulated directly by depolarization, resulting from opening of Ca(2+)-activated Cl(-) channels, but did not require Ca(2+) influx. In support of this, K(+)-induced phasic contractions were also produced in Ca(2+)-free Krebs solution. The phenylephrine but not K(+)-induced phasic contractions in Ca(2+)-free Krebs solution were inhibited by ryanodine or cyclopiazonic acid. This would be consistent with Ca(2+) release from more superficial intracellular stores (affected most by these agents), probably by inositol 1,4,5-trisphospate, being required to stimulate the phenylephrine depolarization.  相似文献   

4.
Stimulus-secretion coupling in pancreatic beta-cells involves membrane depolarization and Ca(2+) entry through voltage-gated L-type Ca(2+) channels, which is one determinant of increases in the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). We investigated how the endoplasmic reticulum (ER)-associated Ca(2+) apparatus further modifies this Ca(2+) signal. When fura-2-loaded mouse beta-cells were depolarized by KCl in the presence of 3 mm glucose, [Ca(2+)](i) increased to a peak in two phases. The second phase of the [Ca(2+)](i) increase was abolished when ER Ca(2+) stores were depleted by thapsigargin. The steady-state [Ca(2+)](i) measured at 300 s of depolarization was higher in control cells compared with cells in which the ER Ca(2+) pools were depleted. The amount of Ca(2+) presented to the cytoplasm during depolarization as estimated from the integral of the increment in [Ca(2+)](i) over time (integralDelta[Ca(2+)](i).dt) was approximately 30% higher compared with that in the Ca(2+) pool-depleted cells. neo-thapsigargin, an inactive analog, did not affect [Ca(2+)](i) response. Using Sr(2+) in the extracellular medium and exploiting the differences in the fluorescence properties of Ca(2+)- and Sr(2+)-bound fluo-3, we found that the incoming Sr(2+) triggered Ca(2+) release from the ER. Depolarization-induced [Ca(2+)](i) response was not altered by, an inhibitor of phosphatidylinositol-specific phospholipase C, suggesting that stimulation of the enzyme by Ca(2+) is not essential for amplification of Ca(2+) signaling. [Ca(2+)](i) response was enhanced when cells were depolarized in the presence of 3 mm glucose, forskolin, and caffeine, suggesting involvement of ryanodine receptors in the amplification process. Pretreatment with ryanodine (100 microm) diminished the second phase of the depolarization-induced increase in [Ca(2+)](i). We conclude that Ca(2+) entry through L-type voltage-gated Ca(2+) channels triggers Ca(2+) release from the ER and that such a process amplifies depolarization-induced Ca(2+) signaling in beta-cells.  相似文献   

5.
Interstitial cells of Cajal (ICCs) freshly isolated from rabbit portal vein and loaded with the Ca(2+)-sensitive indicator fluo-3 revealed rhythmical [Ca(2+)](i) changes occurring at 0.02-0.1 Hz. Each increase in [Ca(2+)](i) originated from a discrete central region of the ICC and propagated as a [Ca(2+)](i) wave towards the cell periphery, but usually became attenuated before reaching the ends of the cell. In about 40% of ICCs each rhythmical change in [Ca(2+)](i) consisted of an initial [Ca(2+)](i) increase (phase 1) followed by a faster rise in [Ca(2+)](i) (phase 2) and then a decrease in [Ca(2+)](i) (phase 3); the frequency correlated with the rate of rise of [Ca(2+)](i) during phase 1, but not with the peak amplitude. Rhythmical [Ca(2+)](i) changes persisted in nicardipine, but were abolished in Ca(2+)-free solution as well as by SK&F96365, cyclopiazonic acid, thapsigargin, 2-APB, xestospongin C or ryanodine. Intracellular Ca(2+) stores visualised with the low-affinity Ca(2+) indicator fluo-3FF were found to be enriched with ryanodine receptors (RyRs) detected with BODIPY TR-X ryanodine. Rhythmical [Ca(2+)](i) changes originated from a perinuclear S/ER element showing the highest RyR density. Immunostaining with anti-TRPC3,6,7 antibodies revealed the expression of these channel proteins in the ICC plasmalemma. This suggests that these rhythmical [Ca(2+)](i) changes, a key element of ICC pacemaking activity, result from S/ER Ca(2+) release which is mediated via RyRs and IP(3) receptors and is modulated by the activity of S/ER-Ca(2+)-ATPase and TRP channels but not by L-type Ca(2+) channels.  相似文献   

6.
The role of Ca(2+) mobilization from intracellular stores and Ca(2+)-activated Cl(-) channels in caffeine- and histamine-induced depolarization and contraction of the rabbit middle cerebral artery has been studied by recording membrane potential and isometric force. Caffeine induced a transient contraction and a transient followed by sustained depolarization. The transient depolarization was abolished by ryanodine, DIDS, and niflumic acid, suggesting involvement of Ca(2+)-activated Cl(-) channels. Histamine-evoked transient contraction in Ca(2+)-free solution was abolished by ryanodine or by caffeine-induced depletion of Ca(2+) stores. Ryanodine slowed the development of depolarization induced by histamine in Ca(2+)-containing solution but did not affect its magnitude. In arteries treated with 1 mM Co(2+), histamine elicited a transient depolarization and contraction, which was abolished by ryanodine. DIDS and niflumic acid reduced histamine-evoked depolarization and contraction. Histamine caused a sustained depolarization and contraction in low-Cl(-) solution. These results suggest that Ca(2+) mobilization from ryanodine-sensitive stores is involved in histamine-induced initial, but not sustained, depolarization and contraction. Ca(2+)-activated Cl(-) channels contribute mainly to histamine-induced initial depolarization and less importantly to sustained depolarization, which is most likely dependent on activation of nonselective cation channels.  相似文献   

7.
Store-operated Ca(2+) channels, which are activated by the emptying of intracellular Ca(2+) stores, provide one major route for Ca(2+) influx. Under physiological conditions of weak intracellular Ca(2+) buffering, the ubiquitous Ca(2+) releasing messenger InsP(3) usually fails to activate any store-operated Ca(2+) entry unless mitochondria are maintained in an energized state. Mitochondria rapidly take up Ca(2+) that has been released by InsP(3), enabling stores to empty sufficiently for store-operated channels to activate. Here, we report a novel role for mitochondria in regulating store-operated channels under physiological conditions. Mitochondrial depolarization suppresses store-operated Ca(2+) influx independently of how stores are depleted. This role for mitochondria is unrelated to their actions on promoting InsP(3)-sensitive store depletion, can be distinguished from Ca(2+)-dependent inactivation of the store-operated channels and does not involve changes in intracellular ATP, oxidants, cytosolic acidification, nitric oxide or the permeability transition pore, but is suppressed when mitochondrial Ca(2+) uptake is impaired. Our results suggest that mitochondria may have a more fundamental role in regulating store-operated influx and raise the possibility of bidirectional Ca(2+)-dependent crosstalk between mitochondria and store-operated Ca(2+) channels.  相似文献   

8.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

9.
10.
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) control the setting up of the neuro-muscular synapse in vitro and probably in vivo. Dissociated cultures of purified embryonic (E15) rat motoneurons were used to explore the molecular mechanisms by which endoplasmic reticulum Ca(2+) stores, via both ryanodine-sensitive and IP(3)-sensitive intracellular Ca(2+) channels control [Ca(2+)](i) homeostasis in these neurons during ontogenesis. Fura-2 microspectrofluorimetry monitorings in single neurons showed that caffeine-induced responses of [Ca(2+)](i) increased progressively from days 1-7 in culture. These responses were blocked by ryanodine and nicardipine but not by omega-conotoxin-GVIA or omega-conotoxin-MVIIC suggesting a close functional relationship between ryanodine-sensitive and L-type Ca(v)1 Ca(2+) channels. Moreover, after 6 days in vitro, neurons exhibited spontaneous or caffeine-induced Ca(2+) oscillations that were attenuated by nicardipine. In 1-day-old neurons, both thapsigargin or CPA, which deplete Ca(2+) stores from the endoplasmic reticulum, induced an increase in [Ca(2+)](i) in 75% of the neurons tested. The number of responding motoneurons declined to 25% at 5-6 days in vitro. Xestospongin-C, a membrane-permeable IP(3) receptor inhibitor blocked the CPA-induced [Ca(2+)](i) response in all stages. RT-PCR studies investigating the expression pattern of RYR and IP(3) Ca(2+) channels isoforms confirmed the presence of their different isoforms and provided evidence for a specific pattern of development for RYR channels during the first week in vitro. Taken together, present results show that the control of motoneuronal [Ca(2+)](i) homeostasis is developmentally regulated and suggest the presence of an intracellular ryanodine-sensitive Ca(2+) channel responsible for a Ca(2+)-induced Ca(2+) release in embryonic motoneurons following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels.  相似文献   

11.
The local control theory of excitation-contraction (EC) coupling in cardiac muscle asserts that L-type Ca(2+) current tightly controls Ca(2+) release from the sarcoplasmic reticulum (SR) via local interaction of closely apposed L-type Ca(2+) channels (LCCs) and ryanodine receptors (RyRs). These local interactions give rise to smoothly graded Ca(2+)-induced Ca(2+) release (CICR), which exhibits high gain. In this study we present a biophysically detailed model of the normal canine ventricular myocyte that conforms to local control theory. The model formulation incorporates details of microscopic EC coupling properties in the form of Ca(2+) release units (CaRUs) in which individual sarcolemmal LCCs interact in a stochastic manner with nearby RyRs in localized regions where junctional SR membrane and transverse-tubular membrane are in close proximity. The CaRUs are embedded within and interact with the global systems of the myocyte describing ionic and membrane pump/exchanger currents, SR Ca(2+) uptake, and time-varying cytosolic ion concentrations to form a model of the cardiac action potential (AP). The model can reproduce both the detailed properties of EC coupling, such as variable gain and graded SR Ca(2+) release, and whole-cell phenomena, such as modulation of AP duration by SR Ca(2+) release. Simulations indicate that the local control paradigm predicts stable APs when the L-type Ca(2+) current is adjusted in accord with the balance between voltage- and Ca(2+)-dependent inactivation processes as measured experimentally, a scenario where common pool models become unstable. The local control myocyte model provides a means for studying the interrelationship between microscopic and macroscopic behaviors in a manner that would not be possible in experiments.  相似文献   

12.
In resting muscle, cytoplasmic Mg(2+) is a potent inhibitor of Ca(2+) release from the sarcoplasmic reticulum (SR). It is thought to inhibit calcium release channels (RyRs) by binding both to low affinity, low specificity sites (I-sites) and to high affinity Ca(2+) sites (A-sites) thus preventing Ca(2+) activation. We investigate the effects of luminal and cytoplasmic Ca(2+) on Mg(2+) inhibition at the A-sites of skeletal RyRs (RyR1) in lipid bilayers, in the presence of ATP or modified by ryanodine or DIDS. Mg(2+) inhibits RyRs at the A-site in the absence of Ca(2+), indicating that Mg(2+) is an antagonist and does not simply prevent Ca(2+) activation. Cytoplasmic Ca(2+) and Cs(+) decreased Mg(2+) affinity by a competitive mechanism. We describe a novel mechanism for luminal Ca(2+) regulation of Ca(2+) release whereby increasing luminal [Ca(2+)] decreases the A-site affinity for cytoplasmic Mg(2+) by a noncompetitive, allosteric mechanism that is independent of Ca(2+) flow. Ryanodine increases the Ca(2+) sensitivity of the A-sites by 10-fold, which is insufficient to explain the level of activation seen in ryanodine-modified RyRs at nM Ca(2+), indicating that ryanodine activates independently of Ca(2+). We describe a model for ion binding at the A-sites that predicts that modulation of Mg(2+) inhibition by luminal Ca(2+) is a significant regulator of Ca(2+) release from the SR. We detected coupled gating of RyRs due to luminal Ca(2+) permeating one channel and activating neighboring channels. This indicated that the RyRs existed in stable close-packed rafts within the bilayer. We found that luminal Ca(2+) and cytoplasmic Mg(2+) did not compete at the A-sites of single open RyRs but did compete during multiple channel openings in rafts. Also, luminal Ca(2+) was a stronger activator of multiple openings than single openings. Thus it appears that RyRs are effectively "immune" to Ca(2+) emanating from their own pore but sensitive to Ca(2+) from neighboring channels.  相似文献   

13.
The relative disposition of ryanodine receptors (RyRs) and L-type Ca(2+) channels was examined in body muscles from three arthropods. In all muscles the disposition of ryanodine receptors in the junctional gap between apposed SR and T tubule elements is highly ordered. By contrast, the junctional membrane of the T tubule is occupied by distinctive large particles that are clustered within the small junctional domain, but show no order in their arrangement. We propose that the large particles of the junctional T tubules represent L-type Ca(2+) channels involved in excitation-contraction (e-c) coupling, based on their similarity in size and location with the L-type Ca(2+) channels or dihydropyridine receptors (DHPRs) of skeletal and cardiac muscle. The random arrangement of DHPRs in arthropod body muscles indicates that there is no close link between them and RyRs. This matches the architecture of vertebrate cardiac muscle and is in keeping with the similarity in e-c coupling mechanisms in cardiac and invertebrate striated muscles.  相似文献   

14.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

15.
Li XH  Wu YJ 《Life sciences》2007,80(9):886-892
Lysophosphatidylcholine (LPC) is an important bioactive lipid. In the nervous system, elevated levels of LPC have been shown to produce demyelination. In the present study, we examined the effect of exogenous LPC on intracellular Ca2+ mobilization in human neuroblastoma SH-SY5Y cells. In Ca2+-containing medium, introduction of LPC induced a steady rise in cytosolic Ca2+ levels ([Ca2+]i) in a dose-dependent manner, and this rise was provoked by LPC itself, not by its hydrolysis product produced by lysophospholipase. The increase in [Ca2+]i was reduced by 36% by removal of extracellular Ca2+, while preincubation of the cells with verapamil, an L-type Ca2+ channel blocker, inhibited the response by 23%, part of the Ca2+ influx. Conversely, Ni2+, which inhibits the Na+-Ca2+ exchanger, or Na+-deprivation did not affect LPC-induced Ca2+ influx. In Ca2+-free medium, depletion of Ca2+ stores in the endoplasmic reticulum (ER) by thapsigargin, an ER Ca2+-ATPase inhibitor, abolished the Ca2+ increase. Moreover, LPC-induced [Ca2+]i increase was fully blocked by ruthenium red and procaine, inhibitors of ryanodine receptor (RyR), but was not affected by 2-aminoethoxydiphenyl borate, an inhibitor of inositol triphosphate receptor, or by pertussis toxin, a G(i/o) protein inhibitor. Combined treatment with verapamil plus thapsigargin markedly inhibited but did not abolish the LPC-induced Ca2+ response. These findings indicate that LPC-induced [Ca2+]i increase depends on both external Ca2+ influx and Ca2+ release from ER Ca2+ stores, in which L-type Ca2+ channels and RyRs may be involved. However, in digitonin-permeabilized SH-SY5Y cells, LPC could not induce any [Ca2+]i increase in Ca2+-free medium, suggesting that LPC may act indirectly on RyRs of ER.  相似文献   

16.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

17.
Large-conductance Ca(2+)-dependent K(+) (BK(Ca)) channels play a critical role in regulating urinary bladder smooth muscle (UBSM) excitability and contractility. Measurements of BK(Ca) currents and intracellular Ca(2+) revealed that BK(Ca) currents are activated by Ca(2+) release events (Ca(2+) sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum. The goals of this project were to characterize Ca(2+) sparks and BK(Ca) currents and to determine the voltage dependence of the coupling of RyRs (Ca(2+) sparks) to BK(Ca) channels in UBSM. Ca(2+) sparks in UBSM had properties similar to those described in arterial smooth muscle. Most Ca(2+) sparks caused BK(Ca) currents at all voltages tested, consistent with the BK(Ca) channels sensing approximately 10 microM Ca(2+). Membrane potential depolarization from -50 to -20 mV increased Ca(2+) spark and BK(Ca) current frequency threefold. However, membrane depolarization over this range had a differential effect on spark and current amplitude, with Ca(2+) spark amplitude increasing by only 30% and BK(Ca) current amplitude increasing 16-fold. A major component of the amplitude modulation of spark-activated BK(Ca) current was quantitatively explained by the known voltage dependence of the Ca(2+) sensitivity of BK(Ca) channels. We, therefore, propose that membrane potential, or any other agent that modulates the Ca(2+) sensitivity of BK(Ca) channels, profoundly alters the coupling strength of Ca(2+) sparks to BK(Ca) channels.  相似文献   

18.
Molecular genetics of ryanodine receptors Ca2+-release channels   总被引:7,自引:0,他引:7  
Rossi D  Sorrentino V 《Cell calcium》2002,32(5-6):307-319
The family of ryanodine receptor (RyR) genes encodes three highly related Ca(2+)-release channels: RyR1, RyR2 and RyR3. RyRs are known as the Ca(2+)-release channels that participate to the mechanism of excitation-contraction coupling in striated muscles, but they are also expressed in many other cell types. Actually, in several cells two or three RyR isoforms can be co-expressed and interactive feedbacks among them may be important for generation of intracellular Ca(2+) signals and regulation of specific cellular functions. Important developments have been obtained in understanding the biochemical complexity underlying the process of Ca(2+) release through RyRs. The 3-D structure of these large molecules has been obtained and some regulatory regions have been mapped within these 3-D reconstructions. Recent studies have clarified the role of protein kinases and phosphatases that, by physically interacting with RyRs, appear to play a role in the regulation of these Ca(2+)-release channels. These and other recent advancements in understanding RyR biology will be the object of this review.  相似文献   

19.
The relative contribution of voltage-sensitive Ca2+ channels, Ca(2+)-ATPases, and Ca2+ release from intracellular stores to spontaneous oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) observed in secretory cells is not well characterized owing to a lack of specific inhibitors for a novel thapsigargin (Tg)-insensitive Ca(2+)-ATPase expressed in these cells. We show that spontaneous [Ca2+]i oscillations in GH3 cells were unaffected by Ca2+ depletion in inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores by the treatment of Tg, but could be initiated by application of caffeine. Moreover, we demonstrate for the first time that these spontaneous [Ca2+]i oscillations were highly temperature dependent. Decreasing the temperature from 22 to 17 degrees C resulted in an increase in the frequency, a reduction in the amplitude, and large inhibition of [Ca2+]i oscillations. Furthermore, the rate of ATP-dependent 45Ca2+ uptake into GH3-derived microsomes was greatly reduced at 17 degrees C. The effect of decreased temperatures on extracellular Ca2+ influx was minor because the frequency and amplitude of spontaneous action potentials, which activate L-type Ca2+ channels, was relatively unchanged at 17 degrees C. These results suggest that in GH3 secretory cells, Ca2+ influx via L-type Ca2+ channels initiates spontaneous [Ca2+]i oscillations, which are then maintained by the combined activity of Ca(2+)-ATPase and Ca(2+)-induced Ca2+ release from Tg/IP3-insensitive intracellular stores.  相似文献   

20.
The localization and function of Ca(2+) stores in isolated chromaffin cells of rat adrenal medulla were investigated using confocal laser microscopy and amperometry. Binding sites for BODIPY-inositol 1,4,5-trisphosphate (IP(3)), -ryanodine (Ry), and -thapsigargin (Thap) were both perinuclear and at the cell periphery. The endoplasmic reticulum (ER), which was identified by ER Tracker dye, took up fluorescent Ry and IP(3), and the majority of BODIPY-Ry-binding area was bound by fluorescent IP(3). Under Ca(2+)-free conditions, the amount of caffeine-induced catecholamine secretion was 33% of that of muscarine-induced secretion, but muscarine induced little or no secretion after exposure to caffeine. Muscarine-induced Ca(2+) increases, as observed with fluo-3, lasted for a few tens of seconds under Ca(2+)-free conditions, whereas a caffeine-induced Ca(2+) transient diminished rapidly with a half decay time of 3s and this spike-like Ca(2+) transient was then followed by a sustained increase with a low level. These results indicate that IP(3) receptors and Ry receptors (RyRs) are present in common ER Ca(2+) storage and the lower potency of caffeine for secretion may be due to a rapid decrease in RyR channel activity to a low level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号