首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic manipulation of wheat (Triticum aestivum L. ) by biotechnological approaches is currently limited by a lack of efficient and reliable transformation method. The authors report a reproducible protocol for rapid production of transgenic wheat via microprojectile bombardment. The experiment was carried out by using the immature embryo excised from caryopsis 14 to 18 days postanthesis and the plant expression plasmid carrying a CaMV 35S-controlled bxn gene, for resistance to herbicide bromoxynil and a selectahle marker gene NPT I. After bombarding the precultured immature embryos isolated from 13 wheat varieties with plasmid DNA-coated tungsten particle, these embryos were transferred on MS medium containing 10 mg/L geneticin G418 sulphate to select and regenerate transformants step by step. As a result, 16 transformed plants were obtained from a total of 849 bombarded embryos. The characterization of these plants by inoculation with herbicide bromoxynil and Southern analysis with bxn gene as a probe showed that 4 of the self-fertile transformed plants contained the target gene and presented herbicide resistance. In several independent transformation experiments, the fastest one took only 6 months from embryo excision to characterization of regenerated plants. Therefore, this procedure is a rapid and efficient technique for delivering foreign DNA into wheat.  相似文献   

2.
Fertile transgenic wheat from microprojectile bombardment of scutellar tissue   总被引:26,自引:0,他引:26  
A reproducible transformation system for hexaploid wheat was developed based on particle bombardment of scutellar tissue of immature embryos. Particle bombardment was carried out using a PDS 1000/He gun. Plant material was bombarded with the plasmid pDB1 containing the β-glucuronidase gene ( uidA ) under the control of the actin-1 promoter of rice, and the selectable marker gene bar (phosphinothricin acetyltransferase) under the control of the CaMV 35S promoter. Selection was carried out using the herbicide Basta (Glufosinate-ammonium). From a total number of 1050 bombarded immature embryos, in seven independent transformation experiments, 59 plants could be regenerated. Putative transformants were screened for enzyme activity by the histochemical GUS assay using cut leaf material and by spraying the whole plants with an aqueous solution of the herbicide Basta. Twelve regenerants survived Basta spraying and showed GUS-activity. Southern-blot analysis indicated the presence of introduced foreign genes in the genomic DNA of the transformants and both marker genes were present in all plants analysed.
To date, four plants have been grown to maturity and set seed. Histochemically stained pollen grains showed a 1:1 segregation of the uidA gene in all plants tested. A 3:1 segregation of the introduced genes was demonstrated by enzyme activity tests and Southern blot analysis of R1 plants.  相似文献   

3.
Wan Y  Lemaux PG 《Plant physiology》1994,104(1):37-48
A rapid, efficient, and reproducible system to generate large numbers of independently transformed, self-fertile, transgenic barley (Hordeum vulgare L.) plants is described. Immature zygotic embryos, young callus, and microspore-derived embryos were bombarded with a plasmid containing bar and uidA either alone or in combination with another plasmid containing a barley yellow dwarf virus coat protein (BYDVcp) gene. A total of 91 independent bialaphos-resistant callus lines expressed functional phosphinothricin acetyltransferase, the product of bar. Integration of bar was confirmed by DNA hybridization in the 67 lines analyzed. Co-transformation frequencies of 84 and 85% were determined for the two linked genes (bar and uidA) and for two unlinked genes (bar and the BYDVcp gene), respectively. More than 500 green, fertile, transgenic plants were regenerated from 36 transformed callus lines on bialaphos-containing medium; albino plants only were regenerated from 41 lines. T0 plants in 25 lines (three plants per line) were analyzed by DNA hybridization, and all contained bar. Most contained the same integration patterns for the introduced genes (bar, uidA, and the BYDVcp gene) as their parental callus lines. Transmission of the genes to T1 progeny was confirmed in the five families analyzed by DNA hybridization. A germination test of immature T1 embryos on bialaphos-containing medium was useful for selecting individuals that were actively expressing bar, although this was not a good indicator of the presence or absence of bar. Expression of bar in some progeny plants was indicated by resistance to the herbicide Basta. The T1 plants were in soil approximately 7 months after bombardment of the immature embryo.  相似文献   

4.
用基因枪法将人工雄性不育基因导入小麦的研究初报   总被引:52,自引:1,他引:51  
傅荣昭  陈占宽 《遗传学报》1997,24(4):358-361
利用PDS1000/氦气基因枪将人工构建的雄性不育基因(TA29-Barnase基因)导入小麦栽培品种豫责18号的幼胚细胞。然后在含有10~20mg/L除草剂Basta的培养基础上筛选与分化。从170个幼胚中获得6株绿苗,对照的70个幼胚中未得到绿苗。对其中3株已生根且长势好的绿苗进行Southem杂交分析,结果表明,这3株绿苗皆为转基因植株,转化效率达1.8%。  相似文献   

5.
研究了不同金粉用量对小麦幼胚瞬间及稳定转化频率的影响,结果表明此实验系统的金粉用量以每枪500μg金粉为佳。对获得的T  相似文献   

6.
用基因枪法将抗除草剂基因导入小麦栽培品种的研究   总被引:1,自引:0,他引:1  
利用基因枪法将抗除草剂bar基因导入西南地区的3个小麦栽培品种,共获得7个转基因植株,转化频率在0.45%~1.2%之间,转化周期缩短至3个月左右。对抗性植株进行PCR和PCR_Southern 杂交检测,初步确定bar基因已导入小麦基因组。做转基因植株叶片对除草剂PPT的抗性试验,有4株呈抗性,3株呈部分抗性,表明bar基因已在小麦植株中得到表达。  相似文献   

7.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:43,自引:0,他引:43  
Betaine aldehyde dehydrogenase (BADH) cDNA cloned from Atriplex hortensis L. in the plasmid pABH9 containing maize ubiquitin promoter and bar gene was transferred into wheat (Triticum aestivum L.) by microprojectile bombardment with 4.1% of average frequency of transformation. From 300 young embryo calli bombarded with the plasmid, 24 transgenic plants were obtained showing BADH gene integration by both PCR and Southern blotting analysis. Among the 24 transgenic plants, 13 exhibited higher BADH activity than the control. Some transgenic plants grew normally with healthy roots on the medium containing 0.7% NaCl while the control plants had very poor roots and finally died.  相似文献   

8.
甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达   总被引:15,自引:1,他引:15  
采用基因枪法将山菠菜甜菜碱醛脱氢酶 (BADH)基因导入小麦 (TriticumaestivumL .)品种 ,并且得以表达。该基因由玉米Ubi1启动子控制。在盐胁迫条件下 ,多数转基因植株叶片的BADH活性比受体亲本提高 1~ 3倍 ,部分植株相对电导率比亲本明显低 ,表明转基因植株的细胞膜在胁迫时有受损较轻倾向。PCR和Southern杂交分析证实外源BADH基因已插入小麦基因组 ,平均转化频率为 4.1%。  相似文献   

9.
DengXY WeiYZ 《Cell research》2001,11(2):156-160
After pre-culture and treatment of osmosis, cotyledons of immature peanut (Arachis hypogaea L.) zygotic embryos were transformed via particle bombardment with a plasmid containing a chimeric hph gene conferring resistance to hygromycin and a chimeric intron-gus gene. Selection for hygromycin resistant calluses and somatic embryos was initiated at 10th d post-bombardment on medium containing 10-25 mg/L hygromycin. Under continuous selection, hygromycin resistant plantlets were regenerated from somatic embryos and were recovered from nearly 1.6% of the bombarded cotyledons. The presence and integration of foreign DNA in regenerated hygromycin resistant plants was confirmed by PCR (polymerase chain reaction) for the intron-gus gene and by Southern hybridization of the hph gene. GUS enzyme activity was detected in leaflets from transgenic plants but not from control, non-transformed plants. The production of transgenic plants are mainly based on a newly improved somatic embryogenesis regeneration system developed by us.  相似文献   

10.
Immature embryos (stage I) and cotyledonary somatic embryos(stage III) of black spruce [Picea mariana (Mill) B.S.P.] werebombarded with tungsten particles coated with a gene constructcontaining the fusion of gus:: nptll. GUS (ß-glucuronidase)activity was monitored histochemically with X-gluc giving ablue colour where transient gene expression was detected inthe bombarded tissues. A high transient expression of gus wasobserved in stage I embryo cultures 2 d after bombardment (202GUS foci per 300 mg tissue). GUS activity had substantiallydiminished in this material 14 d after bombardment, when grownin liquid LP maintenance medium containing BA (4.4µM),2,4-D (9µM) and 1% sucrose. However, when stage I embryoswere cultured on LP maturation medium containing BA (40 µM),IBA (1 µM), 3.4% sucrose and 0.8% agar, GUS activity after2 d was 335 GUS foci per 300 mg tissue, and the activity wasdetected until 30 d after bombardment. With stage III somaticembryos cultured on LP maintenance medium, 92% showed GUS activity2d after bombardment (16 GUS foci per embryo), and 31 % showedactivity 30 d after bombardment (4 GUS foci per embryo). GUSactivity was still evident in 12% of the embryos (2 GUS fociper embryo) 45 d after bombardment. Key words: Black spruce, gus = E. coli geneuid A encoding ß-glucuronidase, nptll = gene encoding neomycin phos-photransferase, somatic embryos  相似文献   

11.
An improved direct transformation method via particle bombardment of split-immature zygotic embryo explants with intact embryonic axis is reported. This method involves abiotic stress (cold treatment and plasmolysis) treatments of explants prepared from immature embryos of 8–10 mm size for improved somatic embryogeneis. Transgenic events were produced using optimized bombardment conditions and selection with hygromycin or glufosinate. Transgenic somatic embryos developed within as little as 4 weeks after bombardment of explants. Transgenic plants were regenerated 4–5 months after bombardment and the entire process from bombardment to T1 seed production took 7–9 months. Plants regenerated from the system were fertile and showed more than 90% heritability of the transgene to the next generation. Transformation frequencies of 5.4 and 2.7% (based on the number of bombarded split-immature embryo explants) were observed with hygromycin and glufosinate selection, respectively.  相似文献   

12.
He  G.Y.  Rooke  L.  Steele  S.  Békés  F.  Gras  P.  Tatham  A.S.  Fido  R.  Barcelo  P.  Shewry  P.R.  Lazzeri  P.A. 《Molecular breeding : new strategies in plant improvement》1999,5(4):377-386
Particle bombardment has been used to transform three cultivars (L35, Ofanto, Svevo) and one breeding line (Latino × Lira) of durum wheat (Triticum turgidum L. var. durum). These varieties were co-transformed with plasmids containing selectable and scorable marker genes (bar and uidA) and plasmids containing one of two high-molecular-weight (HMW) glutenin subunit genes (encoding subunits 1Ax1 or 1Dx5). Ten independent transgenic lines were recovered from 1683 bombarded scutella (transformation efficiency thus 0.6%). Five lines expressed either subunit 1Dx5 or 1Ax1 at levels similar to those of endogenous subunits encoded on chromosome 1B. To identify the effects of the transgenes on the functional properties of grain, three lines showing segregation for transgene expression were used to isolate sibling T2 plants which were null or positive for the transgene product. Analysis of these plants using a small-scale mixograph showed that expression of the additional subunits resulted in increased dough strength and stability, demonstrating that transformation can be used to modify the quality of durum wheat for bread and pasta making.  相似文献   

13.
玉米Ubi-1启动子在可育转基因玉米植株中的表达活性   总被引:2,自引:0,他引:2  
本工作将玉米泛素基因-1启动子(Ubi-1)与大肠杆菌β-葡萄糖苷酸酶基因(gus,uidA)的编码区融合,通过基因枪粒子轰击方法转化来自水成熟胚盾片组织的I-型愈伤组织,经PPT选择获得可育的玉米转基因植株,并采用组织化学方法分析了Ubi-1启动子驱动的gus基因在不同组织,细胞中的表达活性,发现gus基因在除花药壁以外的其它所试组织中均可以有效表达。Ubi:GUS在花粉,卵细胞中T1代转基因植株未成熟胚中的表达显示该启动子在植株发育的早期阶段即具有活性。对T0代转基因植株的花粉进行GUS组织化学染色,gus基因呈1:1分离,显示外源基因在转基因植株中以孟德尔方式遗传。同时发现,使用玉米本身的启动子Ubi-1可以降低外源基因在转基因玉米中的拷贝数,进而避免基因沉默现象的发生。目前已得到第二代转基因种子。  相似文献   

14.
Gao C  Long D  Lenk I  Nielsen KK 《Plant cell reports》2008,27(10):1601-1609
Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.  相似文献   

15.
赵艳  钱前  王慧中  黄大年 《遗传学报》2007,34(9):824-835
基因枪介导基因表达盒(仅包括启动子、编码区和终止子)转化是基因枪转化植物的新趋势,它能消除质粒载体主干序列对转基因植物的不利影响。本文研究了基因枪转化的bar基因表达盒在转基因水稻T1~T3世代中的遗传行为。结果发现:作为筛选标记的bar基因表达盒在水稻基因组中多拷贝整合,遗传分离行为复杂,还出现了Basta抗感分离比在35:1~144:1之间的"假纯合体",但50%转基因株系中(5/10)bar基因可作为一个显性基因按孟德尔方式稳定遗传至自交T2代。虽然bar基因为多拷贝整合,30%的转基因株系(3/10)在自交低世代(T1)能获得纯合体。Southern杂交分析发现,多拷贝的bar基因表达盒倾向于连接成转基因串联子整合在水稻基因组内。我们发现在Basta抗性正常分离的株系后代中bar基因表达盒Southern杂交模式能稳定遗传,但异常分离的株系后代中bar基因表达盒的一些拷贝发生了丢失。我们推测,bar基因表达盒在水稻中遗传分离行为的复杂原因可能是bar基因表达盒多拷贝整合、基因丢失和基因表达互作。  相似文献   

16.
Summary A highly regenerable target tissue and a high-frequency DNA delivery system are required for the routine production of transgenic barley. This project separately optimized tissue culture and particle bombardment parameters. Immature zygotic embryos (0.7 to 1.2 mm) were excised and culture on B5L solid medium. Klages and H930-36 cultivars regenerated significantly more green plants than Sabarlis and Bruce. The regeneration pathway shifted from organogenesis to somatic embryogenesis when maltose was used as the medium carbohydrate source instead of sucrose. More somatic embryos were induced on 5 mg/liter 2,4-dichlorophenoxyacetic acid than 2 mg/liter. Gene delivery was optimized using anthocyanin regulatory genes as a transient marker. A 3-mm rupture disc-to-macrocarrier gap distance, a 1-day prebombardment embryo culture period, and a maltose carbohydrate source were each significantly better than other treatments. Double bombardments per plate, a 6-mm macrocarrier fly distance, and 650-psi rupture discs each had the highest number of transiently expressing cells in individual experiments, although the results were not statistically significant compared to the other treatments. Using the optimized parameters, over 200 cells routinely expressed anthocyanin in a bombarded immature embryo. In tissue culture experiments, 350 to 400 green plants regenerated per 100 immature embryos. The improvement of green plant regeneration and gene delivery forms a strong basis to develop a practical barley transformation system.  相似文献   

17.
The first successful attempt to produce stably transformed castor plants through direct gene transfer using particle gun (BioRad) is described. Decotyledonated embryos from mature seeds were germinated and the embryonic axis was induced to proliferate on Murashige and Skoog (MS) medium supplemented with 0.5 mg l(-1) thidiazuron (TDZ) and subjected to bombardment after 5-7 days of pre-incubation. The physical parameters for transient transformation were optimized using the UidA gene encoding beta-glucuronidase (GUS) as the reporter gene and with hygromycin-phosphotransferase (hptII) gene as selectable marker. Statistical analysis revealed that helium pressure, target distance, osmoticum, microcarrier type and size, DNA quantity, explant type and number of bombardments had significant influence on transformation efficiency, while the effect of genotype was non-significant. Of the different variables evaluated, embryonic axes from mature seeds, a target distance of 6.0 cm, helium pressure of 1,100 psi, 0.6 mum gold microcarriers, single time bombardment and with both pre- and post-osmoticum were found ideal. Selection of putative transformants was done on MS medium supplemented with 0.5 mg l(-1) BA and hygromycin (20, 40 and 60 mg l(-1)) for 3 cycles. The stable integration of the incorporated gene into castor genome was confirmed with PCR and Southern analysis of T(0) and T(1) plants. Transformation frequency in terms of plants grown to maturity and showing the presence of the introduced genes was 1.4%. The present results demonstrate the possibility of transformation of embryonic meristematic tissues of castor through particle delivery system.  相似文献   

18.
The effectiveness of different promoters for use in Indica rice transformation was compared. Plasmids encoding the Escherichia coli uidA (gus) gene under the control of CaMV 35S, Emu, Act1 or Ubi1 promoters were delivered into cell suspension cultures by particle bombardment. Transient gene expression, 48 h after delivery, was greatest from plasmids utilising the constitutive promoters, Act1 and Ubi1. Gene expression in stably transformed tissue was examined by bombarding embryogenic Indica rice calli with a pUbi1-gas plasmid and a plasmid containing either the selectable marker gene, hph, which confers hygromycin resistance, or bar, which confers resistance to the herbicide phosphinothricin (BASTA) each under the control of the CaMV 35S, Emu, Act1 or the Ubi1 promoters. The bombarded calli were placed on the appropriate selection media and stained for GUS activity at 1 day, 3 weeks and 5 weeks after shooting. Callus bombarded with the pUbi1-hph or the pEmu-hph constructs gave a dramatic increase in the size of the GUS staining areas with time. No such increase in the size of GUS staining areas was observed in calli co-bombarded with pUbi1-gus and any of the bar containing constructs.Co-bombardment of calli with either the pEmu-hph or pUbi1-hph construct and a virus minor coat protein (cp) gene construct resulted in many fertile transgenic Indica rice plants, containing one to eight copies of both the hph and cp genes. These genes were stably inherited by the T1 generation.  相似文献   

19.
水稻(Oryza sativa L.)谷蛋白(Glutelin)约占水稻储藏蛋白总量的80%,谷蛋白赖氨酸含量较高并易于被人体消化吸收。为了提高小麦(Triticum aestivum L. )的营养品质,将水稻谷蛋白GluA-2基因的cDNA序列导入小麦栽培品种Bobwhite(T. aestivum cv. Bobwhite)。共轰击了600个小麦幼胚,经PCR和Southern杂交鉴定,共获得4棵转GluA-2基因小麦;SDS-PAGE分析表明,GluA-2基因在3棵转基因植株及其后代中表达,在1棵转基因植株中未表达,但其内源的高分子量麦谷蛋白亚基Bx7和By9含量显著降低,并且可遗传至T_代。  相似文献   

20.
Pearl millet [ Pennisetum glaucum (L.) R. Br.] is a drought-tolerant cereal crop used for grain and forage. Novel traits from outside of the gene pool could be introduced provided a reliable gene-transfer method were available. We have obtained herbicide-resistant transgenic pearl millet plants by microprojectile bombardment of embryogenic tissues with the bar gene. Embryogenic tissues derived from immature embryos, inflorescences and apical meristems from diploid and tetraploid pearl millet genotypes were used as target tissues. Transformed cells were selected in the dark on Murashige and Skoog medium supplemented with 2 mg/l 2,4-D and 15 mg/l phosphinothricin (PPT). After 3-10 weeks in the dark, herbicide-resistant somatic embryos were induced to germinate on MS medium containing 0.1 mg/l thidiazuron and 0.1 mg/l 6-benzylaminopurine. Plants were transferred to the greenhouse after they were rooted in the presence of PPT and had passed a chlorophenol red assay (the medium turned from red to yellow). Transgenic plants were recovered from bombardments using intact pAHC25 plasmid DNA, a gel-purified bar fragment, or a mixture of pAHC25 plasmid or bar fragment and a plasmid containing the enhanced green fluorescent protein ( gfp) gene (p524EGFP.1). Analyses by the polymerase chain reaction, Southern blot hybridization, GFP expression, resistance to herbicide application, and segregation of the bar and gfp genes confirmed the presence and stable integration of the foreign DNA. Transformed plants were recovered from all three explants, although transformation conditions were optimized using only the tetraploid inflorescence. Time from culture initiation to rooted transgenic plant using the tetraploid inflorescence ranged from 3-4 months. Seven independent DNA/gold precipitations were used to bombard 52 plates, 29 of which produced an average of 5.5 herbicide-resistant plants per plate. The number of herbicide-resistant plants recovered per successful bombardment ranged from one to 28 and the frequency of co-transformation with gfp ranged from 5% to 85%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号