首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we have examined the roles of endogenous cysteine residues in the rat brain K(+)-dependent Na(+)/Ca(2+) exchanger protein, NCKX2, by site-directed mutagenesis. We found that mutation of Cys-614 or Cys-666 to Ala inhibited expression of the exchanger protein in HEK-293 cells, but not in an in vitro translation system. We speculated that Cys-614 and Cys-666 might form an extracellular disulfide bond that stabilized protein structure. Such an arrangement would place the C terminus of the exchanger outside the cell, contrary to the original topological model. This hypothesis was tested by adding a hemagglutinin A epitope to the C terminus of the protein. The hemagglutinin A epitope could be recognized with a specific antibody without permeabilization of the cell membrane, supporting an extracellular location for the C terminus. Additionally, the exchanger molecule could be labeled with biotin maleimide only following extracellular application of beta-mercaptoethanol. Surprisingly, mutation of Cys-395, located in the large intracellular loop, to Ala, prevented reduction-dependent labeling of the protein. The activity of wild-type exchanger, but not the Cys-395 --> Ala mutant, was stimulated after application of beta-mercaptoethanol. Co-immunoprecipitation experiments demonstrated self-association between wild-type and FLAG-tagged exchanger proteins that could not be inhibited by Cys-395 --> Ala mutation. These results suggest that NCKX2 associates as a dimer, an interaction that does not require, but may be stabilized by, a disulfide linkage through Cys-395. This linkage, perhaps by limiting protein mobility along the dimer interface, reduces the transport activity of NCKX2.  相似文献   

2.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

3.
K+-dependent Na+-Ca2+ exchangers (NCKXs) play an important role in Ca2+ homeostasis in many tissues. NCKX proteins are bi-directional plasma membrane Ca2+-transporters which utilize the inward Na+ and outward K+ gradients to move Ca2+ ions into and out of the cytosol (4Na+:1Ca2+ + 1 K+). In this study, we carried out scanning mutagenesis of all the residues of the highly conserved α-1 and α-2 repeats of NCKX2 to identify residues important for K+ transport. These structural elements are thought to be critical for cation transport. Using fluorescent intracellular Ca2+-indicating dyes, we measured the K+ dependence of transport carried out by wildtype or mutant NCKX2 proteins expressed in HEK293 cells and analyzed shifts in the apparent binding affinity (Km) of mutant proteins in comparison with the wildtype exchanger. Of the 93 residue substitutions tested, 34 were found to show a significant shift in the external K+ ion dependence of which 16 showed an increased affinity to K+ ions and 18 showed a decreased affinity and hence are believed to be important for K+ ion binding and transport. We also identified 8 residue substitutions that resulted in a partial loss of K+ dependence. Our biochemical data provide strong support for the cation binding sites identified in a homology model of NCKX2 based on crystal structures reported for distantly related archaeal Na+-Ca2+ exchanger NCX_Mj. In addition, we compare our results here with our previous studies that report on residues important for Ca2+ and Na+ binding. Supported by CIHR MOP-81327.  相似文献   

4.
Actin-dependent regulation of the cardiac Na(+)/Ca(2+) exchanger   总被引:1,自引:0,他引:1  
In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain (241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl--cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl--cyclodextrin (Me--CD) stimulated NCX activity by 70%. The activity of the (241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me--CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation. cytochalasin; methyl--cyclodextrin; allosteric calcium activation  相似文献   

5.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

6.
K(+)-dependent Na(+)/Ca(2+) exchangers (NCKX) catalyze cytosolic Ca(2+) extrusion and are particularly important for neuronal Ca(2+) signaling. Of the five mammalian isoforms, the detailed functional characteristics have only been reported for NCKX1 and -2. In the current study, the functional characteristics of recombinant NCKX3 and -4 expressed in HEK293 cells were determined and compared with those of NCKX2. Although the apparent affinities of the three isoforms for Ca(2+) and Na(+) were similar, NCKX3 and -4 displayed approximately 40-fold higher affinities for K(+) ions than NCKX2. Functional analysis of various NCKX2 mutants revealed that mutation of Thr-551 to Ala, the corresponding residue in NCKX4, resulted in an apparent K(+) affinity shift to one similar to that of NCKX4 without a parallel shift in apparent Ca(2+) affinity. In the converse situation, when Gln-476 of NCKX4 was converted to Lys, the corresponding residue in NCKX2, both the K(+) and Ca(2+) affinities were reduced. These results indicate that the apparently low K(+) affinity of NCKX2 requires a Thr residue at position 551 that may reduce the conformational flexibility and/or K(+) liganding strength of side-chain moieties on critical neighboring residues. This interaction appears to be specific to the structural context of the NCKX2 K(+) binding pocket, because it was not possible to recreate the K(+)-specific low affinity phenotype with reciprocal mutations in NCKX4. The results of this study provide important information about the structure and function of NCKX proteins and will be critical to understanding their roles in neuronal Ca(2+) signaling.  相似文献   

7.
Role of Na(+)/H(+) exchanger during O(2) deprivation in mouse CA1 neurons   总被引:1,自引:0,他引:1  
To determine the role ofmembrane transporters in intracellular pH (pHi) regulationunder conditions of low microenvironmental O2, we monitoredpHi in isolated single CA1 neurons using the fluorescentindicator carboxyseminaphthorhodafluor-1 and confocal microscopy. Aftertotal O2 deprivation or anoxia (PO2 0 Torr), a large increase in pHi was seen in CA1neurons in HEPES buffer, but a drop in pHi, albeit small,was observed in the presence of HCO. Ionicsubstitution and pharmacological experiments showed that the largeanoxia-induced pHi increase in HEPES buffer was totallyNa+ dependent and was blocked by HOE-694, stronglysuggesting the activation of the Na+/H+exchanger (NHE). Also, this pHi increase in HEPES bufferwas significantly smaller in Na+/H+ exchangerisoform 1 (NHE1) null mutant CA1 neurons than in wild-type neurons,demonstrating that NHE1 is responsible for part of the pHiincrease following anoxia. Both chelerythrine and H-89 partly blocked,and H-7 totally eliminated, this anoxia-induced pHiincrease in the absence of HCO. We conclude that1) O2 deprivation activatesNa+/H+ exchange by enhancing protein kinaseactivity and 2) membrane proteins, such as NHE, activelyparticipate in regulating pHi during low-O2states in neurons.

  相似文献   

8.
The expression of the Na(+)/Ca(2+) exchanger was studied in differentiating muscle fibers in rats. NCX1 and NCX3 isoform (Na(+)/Ca(2+) exchanger isoform) expression was found to be developmentally regulated. NCX1 mRNA and protein levels peaked shortly after birth. Conversely, NCX3 isoform expression was very low in muscles of newborn rats but increased dramatically during the first 2 wk of postnatal life. Immunocytochemical analysis showed that NCX1 was uniformly distributed along the sarcolemmal membrane of undifferentiated rat muscle fibers but formed clusters in T-tubular membranes and sarcolemma of adult muscle. NCX3 appeared to be more uniformly distributed along the sarcolemma and inside myoplasm. In the adult, NCX1 was predominantly expressed in oxidative (type 1 and 2A) fibers of both slow- and fast-twitch muscles, whereas NCX3 was highly expressed in fast glycolytic (2B) fibers. NCX2 was expressed in rat brain but not in skeletal muscle. Developmental changes in NCX1 and NCX3 as well as the distribution of these isoforms at the cellular level and in different fiber types suggest that they may have different physiological roles.  相似文献   

9.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport. Charge-removing replacement of Asp(575) by either asparagine or cysteine rendered the mutant NCKX2 proteins independent of K(+), whereas the charge-conservative substitution of Asp(575) to glutamate resulted in a nonfunctional mutant NCKX2 protein, accentuating the critical nature of this residue. Asp(575) is conserved in the NCKX1-5 genes, while an asparagine is found in this position in the three NCX genes, coding for the K(+)-independent Na(+)/Ca(2+) exchanger.  相似文献   

10.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4 degrees C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na(+)/K(+)-ATPase and Mg(2+)-ATPase, retained 70-80% activity after the adsorption. In addition, adsorption stabilizes Na(+)/K(+)-ATPase and Mg(2+)-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na(+)/K(+)-ATPase and Mg(2+)-ATPase and their sensitivity to and mechanism of Cd(2+)- or Hg(2+)-induced inhibition. The only exception is the "high affinity" Mg(2+)-ATPase moiety, whose affinity for ATP and sensitivity toward Cd(2+) were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   

11.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF) plays an important role in neuroinflammatory and neuropathic pain conditions. Astrocytes produce and secrete GDNF, which interacts with its receptors to induce Ca(2+) transients. This study aimed first to assess intracellular Ca(2+) responses of astrocytes in primary culture when exposed to the neuroprotective and anti-inflammatory peptide GDNF. Furthermore, incubation with the inflammatory inducers lipopolysaccharide (LPS), NMDA, or interleukin 1-β (IL-1β) attenuated the GDNF-induced Ca(2+) transients. The next aim was to try to restore the suppressed GDNF responses induced by inflammatory changes in the astrocytes with an anti-inflammatory substance. Ifenprodil, an NMDA receptor antagonist at the NR2B subunit, was tested. It was shown to restore the GDNF-evoked Ca(2+) transients and increased the Na(+)/K(+) -ATPase expression. Ifenprodil seems to be a potent anti-inflammatory substance for astrocytes which have been pre-activated by inflammatory stimuli.  相似文献   

13.
14.
PC12 cells were stably transfected with cDNA encoding the Na(+)/Ca(2+) exchanger (NCX1.4). A robust Na(+)-dependent Ca(2+) uptake confirmed the functional expression of the protein. When NCX1. 4 expressing cells (NO) and vector transfected control cells (VC) were exposed to 0.5-20 microM ionomycin for 6 h, a dose-dependent increase in LDH release was observed. LDH release was significantly reduced in NO when compared with VC. When either VC and NO were treated with 3 microM ionomycin and 1.1 mM EGTA, the increase in LDH release was nearly abolished. However, when VC and NO were treated with ionomycin and then EGTA was added 2 min later, LDH release remained elevated. These data suggest ionomycin-induced cell death was Ca(2+) dependent and expressing NCX1.4 may have ameliorated cell death by reducing elevated [Ca(2+)](I).  相似文献   

15.
16.
We investigated the role of Na(+)-K(+)-Cl(-) co-transporter isoform 1 (NKCC1) and reversal of Na(+)/Ca(2+) exchanger (NCX(rev)) in glutamate-mediated excitotoxicity in oligodendrocytes obtained from rat spinal cords (postnatal day 6-8). An immunocytochemical characterization showed that these cultures express NKCC1 and Na(+)/Ca(2+) exchanger isoforms 1, 2, and 3 (NCX1, NCX2, NCX3). Exposing the cultures to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) plus cyclothiazide (CTZ) led to a transient rise in intracellular (), which was followed by a sustained overload, NKCC1 phosphorylation, and a NKCC1-mediated Na(+) influx. In the presence of a specific AMPA receptor inhibitor 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), the AMPA/CTZ failed to elicit any changes in . The AMPA/CTZ-induced sustained rise led to mitochondrial Ca(2+) accumulation, release of cytochrome c from mitochondria, and cell death. The AMPA/CTZ-elicited increase, mitochondrial damage, and cell death were significantly reduced by inhibiting NKCC1 or NCX(rev). These data suggest that in cultured oligodendrocytes, activation of AMPA receptors leads to NKCC1 phosphorylation that enhances NKCC1-mediated Na(+) influx. The latter triggers NCX(rev) and NCX(rev)-mediated overload and compromises mitochondrial function and cellular viability.  相似文献   

17.
Nitric oxide (NO)-mediated and NO-independent mechanisms of endothelium-dependent vasodilatation involve Ca(2+)-dependent K(+) (K(Ca)) channels. We examined the role in vivo of K(Ca) channels in NO-independent vasodilatation in hypercholesterolemia. Hindlimb vascular conductance was measured at rest and after aortic injection of ACh, bradykinin (BK), and sodium nitroprusside in anesthetized control and cholesterol-fed rabbits. Conductances were measured before and after treatment with the NO synthase antagonist N(omega)-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) or K(Ca) blockers tetraethylammonium (30 mg/kg), charybdotoxin (10 microgram/kg), and apamin (50 microgram/kg). The contribution of NO to basal conductance was greater in control than in cholesterol-fed rabbits [2.2 +/- 0.4 vs. 1.1 +/- 0.3 (SE) ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.05], but the NO-independent K(Ca) channel-mediated component was greater in the cholesterol-fed than in the control group (1.1 + 0.4 vs. 0.3 +/- 0.1 ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.05). Maximum conductance response to ACh and BK was less in cholesterol-fed than in control rabbits, and the difference persisted after L-NAME (ACh: 7.7 +/- 0.7 vs. 10.1 +/- 0.5 ml. min(-1). kg(-1). 100 mmHg(-1), P < 0.005). Blockade of K(Ca) channels with tetraethylammonium or charybdotoxin + apamin almost completely abolished L-NAME-resistant vasodilatation after ACh or BK. The magnitude of K(Ca)-mediated vasodilatation after ACh or BK was impaired in hypercholesterolemic rabbits. Vasodilator responses to nitroprusside did not differ between groups. In vivo, hypercholesterolemia is associated with an altered balance between NO-mediated and NO-independent K(Ca) channel contributions to resting vasomotor tone and impairment of both mechanisms of endothelium-dependent vasodilatation.  相似文献   

18.
19.
Although the neurotoxic potential of methamphetamine (METH) is well established, underlying mechanisms have yet to be identified. In the present study, we sought to determine whether ionic dysregulation was a feature of METH neurotoxicity. In particular, we reasoned that if METH impairs the function of Na(+)/H(+) and/or Na(+)/Ca(2+) antiporters by compromising the inward Na(+) gradient [via prolonged DA transporter (DAT) activation and Na(+)/K(+) ATPase inhibition], then amiloride (AMIL) and other inhibitors of Na(+)/H(+) and/or Na(+)/Ca(2+) exchange would potentiate METH neurotoxicity. To test this hypothesis, mice were treated with METH alone or in combination with AMIL or one of its analogs; 1 week later, the animals were killed for studies of dopamine (DA) neuronal integrity. AMIL markedly potentiated the toxic effect of METH on DA neurons. Potentiation was not caused by increased core temperature, enhanced DAT activity or higher METH brain levels. The DAT inhibitor, WIN-35,428, protected completely against METH-induced DA neurotoxicity in AMIL pretreated animals, suggesting that the potentiating effects of AMIL require a METH/DAT interaction. Findings with METH and AMIL were extended to six other AMIL analogs (MIA, EIPA, DIMA, BENZ, BEP, DiCBNZ), another species (rats), and neuronal type (5-HT neurons). These results support the notion that ionic dysregulation may play a role in METH neurotoxicity.  相似文献   

20.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号