首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Bicarbonate is one of the major anions in mammalian tissues and extracellular fluids. Along with accompanying H+, HCO3- is generated from CO2 and H2 O, either spontaneously or via the catalytic activity of carbonic anhydrase. It serves as a component of the major buffer system, thereby playing a critical role in pH homeostasis. Bicarbonate can also be utilized by a variety of ion transporters, often working in coupled systems, to transport other ions and organic substrates across cell membranes. The functions of HCO3- and HCO3--transporters in epithelial tissues have been studied extensively, but their functions in heart are less well understood. Here we review studies of the identities and physiological functions of Cl-/HCO3- exchangers and Na+/HCO3-cotransporters of the SLC4 A and SLC26 A families in heart. We also present RNA Seq analysis of their cardiac mRNA expression levels. These studies indicate that slc4a3(AE3) is the major Cl-/HCO3- exchanger and plays a protective role in heart failure, and that Slc4a4(NBCe1) is the major Na+/HCO3- cotransporter and affects action potential duration. In addition, previous studies show that HCO3- has a positive inotropic effect in the perfused heart that is largely independent of effects on intracellular Ca2+. The importance of HCO3- in the regulation of contractility is supported by experiments showing that isolated cardiomyocytes exhibit sharply enhanced contractility, with no change in Ca2+ transients, when switched from Hepes-buffered to HCO3-- buffered solutions. These studies demonstrate that HCO3- and HCO3--handling proteins play important roles in the regulation of cardiac function.  相似文献   

3.
This mini-review addresses advances in understanding the transmembrane topologies of two unrelated, single-subunit bicarbonate transporters from cyanobacteria, namely BicA and SbtA. BicA is a Na+-dependent bicarbonate transporter that belongs to the SulP/SLC26 family that is widespread in both eukaryotes and prokaryotes. Topology mapping of BicA via the phoA/lacZ fusion reporter method identified 12 transmembrane helices with an unresolved hydrophobic region just beyond helix 8. Re-interpreting this data in the light of a recent topology study on rat prestin leads to a consensus topology of 14 transmembrane domains with a 7+7 inverted repeat structure. SbtA is also a Na+-dependent bicarbonate transporter, but of considerably higher affinity (Km 2–5?μM versus >100?μM for BicA). Whilst SbtA is widespread in cyanobacteria and a few bacteria, it appears to be absent from eukaryotes. Topology mapping of SbtA via the phoA/lacZ fusion reporter method identified 10 transmembrane helices. The topology consists of a 5+5 inverted repeat, with the two repeats separated by a large intracellular loop. The unusual location of the N and C-termini outside the cell raises the possibility that SbtA forms a novel fold, not so far identified by structural and topological studies on transport proteins.  相似文献   

4.
The cyanobacterial Na+-dependent HCO3- transporter BicA is a member of the ubiquitous and important SulP/SLC26 family of anion transporters found in eukaryotes and prokaryotes. BicA is an important component of the cyanobacterial CO2 concentrating mechanism, an adaptation that contributes to cyanobacteria being able to achieve an estimated 25% of global primary productivity, largely in the oceans. The human SLC26 members are involved in a range of key cellular functions involving a diverse range of anion transport activities including Cl-/HCO3-, I-/HCO3-, and SO42-/HCO3- exchange; mutations in SLC26 members are known to be associated with debilitating diseases such as Pendred syndrome, chondrodysplasias, and congenital chloride diarrhoea. We have recently experimentally determined the membrane topology of BicA using the phoA-lacZ reporter system and here consider some of the extrapolated implications for topology of the human SLC26 family and the Sultr plant sulphate transporters.  相似文献   

5.
6.
HCO(3)(-) plays critically important roles during virtually the entire process of reproduction in mammals, including spermatogenesis, sperm capacitation, fertilization, and development of early stage embryos. Therefore, the acid-base balance in the male and female reproductive tracts must be finely modulated. The fluid milieu in the epididymis is acidic, containing very low concentration of HCO(3)(-). In this acidic low HCO(3)(-) environment, mature sperm are rendered quiescent in the epididymis. In contrast, the luminal fluid in the female uterus and oviduct is alkaline, with very high concentration of HCO(3)(-) that is essential for sperm to fulfill fertilization. HCO(3)(-) transporter of solute carrier 4 (SLC4) and SLC26 families represent the major carriers for HCO(3)(-) transport across the plasma membrane. These transporters play critical roles in intracellular pH regulation and transepithelial HCO(3)(-) transport. The physiological roles of these transporters in mammalian reproduction are of fundamental interest to investigators. Here we review recent progress in understanding the expression of HCO(3)(-) transporters in reproductive tract tissues as well as the physiological roles of these transporters in mammalian reproduction.  相似文献   

7.
Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of the food chain by fixing carbon and nitrogen into cellular biomass. To compensate for the low selectivity of Rubisco for CO2 over O2, cyanobacteria have developed highly efficient CO2-concentrating machinery of which the ABC transport system CmpABCD from Synechocystis PCC 6803 is one component. Here, we have described the structure of the bicarbonate-binding protein CmpA in the absence and presence of bicarbonate and carbonic acid. CmpA is highly homologous to the nitrate transport protein NrtA. CmpA binds carbonic acid at the entrance to the ligand-binding pocket, whereas bicarbonate binds in nearly an identical location compared with nitrate binding to NrtA. Unexpectedly, bicarbonate binding is accompanied by a metal ion, identified as Ca2+ via inductively coupled plasma optical emission spectrometry. The binding of bicarbonate and metal appears to be highly cooperative and suggests that CmpA may co-transport bicarbonate and calcium or that calcium acts a cofactor in bicarbonate transport.  相似文献   

8.
Bicarbonate is a waste product of mitochondrial respiration and one of the main buffers in the human body. Thus, bicarbonate transporters play an essential role in maintaining acid-base balance but also during fetal development as they ensure tight regulation of cytosolic and extracellular environments. Bicarbonate transporters belong to two gene families, SLC4A and SLC26A. Proteins from these two families are widely expressed, and thus mutations in their genes result in various diseases that affect bones, pancreas, reproduction, brain, kidneys, eyes, heart, thyroid, red blood cells, and lungs. In this minireview, we discuss the current state of knowledge regarding the effect of SLC4A and SLC26A mutants, with a special emphasis on mutants that have been studied in mammalian cell lines and how they correlate with phenotypes observed in mice models.  相似文献   

9.
10.
11.
Association of some plasma membrane bicarbonate transporters with carbonic anhydrase enzymes forms a bicarbonate transport metabolon to facilitate metabolic CO2-HCO3 conversions and coupled HCO3 transport. The transmembrane carbonic anhydrase, CAIX, with its extracellular catalytic site, is highly expressed in parietal and other cells of gastric mucosa, suggesting a role in acid secretion. We examined in transfected HEK293 cells the functional and physical interactions between CAIX and the parietal cell Cl/HCO3 exchanger AE2 or the putative Cl/HCO3 exchanger SLC26A7. Coexpression of CAIX increased AE2 transport activity by 28 ± 7% and also activated transport mediated by AE1 and AE3 (32 ± 10 and 37 ± 9%, respectively). In contrast, despite a transport rate comparable to that of AE3, coexpressed CAIX did not alter transport associated with SLC26A7. The CAIX-associated increase of AE2 activity did not result from altered AE2 expression or cell surface processing. CAIX was coimmunoprecipitated with the coexpressed SLC4 polypeptides AE1, AE2, and AE3, but not with SLC26A7. GST pull-down assays with a series of domain-deleted forms of CAIX revealed that the catalytic domain of CAIX mediated interaction with AE2. AE2 and CAIX colocalized in human gastric mucosa, as indicated by coimmunofluorescence. This is the first example of a functional and physical interaction between a bicarbonate transporter and a transmembrane carbonic anhydrase. We conclude that CAIX can bind to some Cl/HCO3 exchangers to form a bicarbonate transport metabolon. SLC4; SLC26; bicarbonate transport metabolon  相似文献   

12.
The ABC superfamily of genes is one of the largest in the genomes of both bacteria and eukaryotes. The proteins encoded by these genes all carry a characteristic 200- to 250-amino-acid ATP-binding cassette that gives them their family name. In bacteria they are mostly involved in nutrient import, while in eukaryotes many are involved in export. Seven different families have been defined in eukaryotes based on sequence homology, domain topology, and function. While only 6 ABC genes in Dictyostelium discoideum have been studied in detail previously, sequences from the well-advanced Dictyostelium genome project have allowed us to recognize 68 members of this superfamily. They have been classified and compared to animal, plant, and fungal orthologs in order to gain some insight into the evolution of this superfamily. It appears that many of the genes inferred to have been present in the ancestor of the crown organisms duplicated extensively in some but not all phyla, while others were lost in one lineage or the other.  相似文献   

13.
以葡萄中的蔗糖转运蛋白为主要研究对象,结合了功能研究较为深入的拟南芥和水稻蔗糖转运蛋白家族序列,分析讨论了这些基因在启动子区域顺式作用元件的异同,以及这些差异可能对mRNA的转录带来的影响;同时,根据蔗糖转运蛋白氨基酸序列对其家族进行了分类,分析了不同亚类蔗糖转运蛋白基因结构的特点;最后还对蔗糖转运蛋白家族中氨基酸的保守性进行了分析。这些分析将为后续蔗糖转运蛋白功能基因组学的研究以及通过基因工程技术精确调节植物代谢提供一定的依据。  相似文献   

14.
We performed comparative and mutational analyses to define more comprehensively the repertoire of genes involved in cyanobacterial cell division. Genes ftsE, ftsI, ftsQ, ftsW, and (previously recognized) ftsZ, minC, minD, minE and sulA were identified as homologues of cell division genes of Gram-negative and Gram-positive bacteria. Transposon mutagenesis of Synechococcus elongatus PCC 7942 identified five additional genes, cdv1, cdv2, cdv3, ftn6 and cikA, involved in cell division. cdv1 encodes a presumptive periplasmic peptidyl-prolyl cis-trans isomerase. cdv2 has similarity to ylmF which, like divIVA, lies within the Gram-positive bacterial ylm gene cluster whose members have functions associated with division. Conservation of other ylm genes in cyanobacteria suggests that cyanobacteria and Gram-positive bacteria share specific division proteins. Two ylm homologues are also found in algal and plant genomes. cdv3 has low but significant similarity to divIVA, suggesting that minE and cdv3 both mediate division-site determination in cyanobacteria. In contrast, Gram-positive bacteria lack minE, and (Gram-negative) proteobacteria lack divIVA. ftn6, of unknown function, and the circadian input kinase, cikA, are specific to cyanobacteria. In S. elongatus, unlike in other bacteria, FtsZ rings are formed at sites occupied by nucleoids. Thus, the division machinery of cyanobacteria differs in its composition and regulation from that of Gram-negative and Gram-positive bacteria.  相似文献   

15.
Eukaryotic zinc transporters and their regulation   总被引:49,自引:0,他引:49  
  相似文献   

16.
真核生物锌转运体及其活性的调控   总被引:2,自引:0,他引:2  
秦海宏  王福俤  郭俊生 《生命科学》2004,16(1):24-26,48
真核生物的锌内稳态是由其众多特异转运体协同转运来实现的。有两个锌转运体家族ZIP和CDF被相继发现。ZIP家族的主要功能是摄取锌,而CDF家族成员主要参与锌的外排及锌在细胞内的区室化以达到解毒或贮存的目的。锌可在转录水平和翻译水平调控两类转运体的活性以维持锌在细胞和生物体水平的内稳态。  相似文献   

17.
Due to the relative ease of obtaining their crystal structures, bacterial ion channels provide a unique opportunity to analyse structure and function of their eukaryotic homologues. This review describes prokaryotic channels whose structures have been determined. These channels are KcsA, a bacterial homologue of eukaryotic potassium channels, MscL, a bacterial mechanosensitive ion channel and ClC0, a prokaryotic homologue of the eukaryotic ClC family of anion-selective channels. General features of their structure and function are described with a special emphasis on the advantages that these channels offer for understanding the properties of their eukaryotic homologues. We present amino-acid sequences of eukaryotic proteins related in their primary sequences to bacterial mechanosensitive channels. The usefulness of bacterial mechanosensitive channels for the studies on general principles of mechanosensation is discussed.  相似文献   

18.
The Tic20 protein was identified in pea (Pisum sativum) as a component of the chloroplast protein import apparatus. In Arabidopsis, there are four Tic20 homologues, termed atTic20‐I, atTic20‐IV, atTic20‐II and atTic20‐V, all with predicted topological similarity to the pea protein (psTic20). Analysis of Tic20 sequences from many species indicated that they are phylogenetically unrelated to mitochondrial Tim17‐22‐23 proteins, and that they form two evolutionarily conserved subgroups [characterized by psTic20/atTic20‐I/IV (Group 1) and atTic20‐II/V (Group 2)]. Like psTic20, all four Arabidopsis proteins have a predicted transit peptide consistent with targeting to the inner envelope. Envelope localization of each one was confirmed by analysis of YFP fusions. RT‐PCR and microarray data revealed that the four genes are expressed throughout development. To assess the functional significance of the genes, T‐DNA mutants were identified. Homozygous tic20‐I plants had an albino phenotype that correlated with abnormal chloroplast development and reduced levels of chloroplast proteins. However, knockouts for the other three genes were indistinguishable from the wild type. To test for redundancy, double and triple mutants were studied; apart from those involving tic20‐I, none was distinguishable from the wild type. The tic20‐I tic20‐II and tic20‐I tic20‐V double mutants were albino, like the corresponding tic20‐I parent. In contrast, tic20‐I tic20‐IV double homozygotes could not be identified, due to gametophytic and embryonic lethality. Redundancy between atTic20‐I and atTic20‐IV was confirmed by complementation analysis. Thus, atTic20‐I and atTic20‐IV are the major functional Tic20 isoforms in Arabidopsis, with partially overlapping roles. While the Group 2 proteins have been conserved over approximately 1.2 billion (1.2 × 109) years, they are not essential for normal development.  相似文献   

19.
Abstract

The transporter SbtA is a high affinity Na+-dependent HCO3 - uptake system present in a majority of cyanobacterial clades. It functions in conjunction with CO2 uptake systems and other HCO3 - uptake systems to allow cyanobacteria to accumulate high levels of HCO3 - used to support efficient photosynthetic CO2 fixation via the CO2 concentrating mechanism in these species. The phoA/lacZ fusion reporter method was used to determine the membrane topology of the cyanobacterial bicarbonate transporter, SbtA (predicted size of ~ 39.7 kD), cloned from the freshwater strain, Synechocystis PCC6803. The structure conforms to a model featuring 10 transmembrane helices (TMHs), with a distinct 5 + 5 duplicated structure. Both the N- and C-terminus are outside the cell and the second half of the protein is inverted relative to the first. The first putative helix appears to lack sufficient topogenic signals for its correct orientation in the membrane and instead relies on the presence of later helices. The cytoplasmic loop between helices 5 and 6 is a likely location for regulatory mechanisms that could govern activation of the transporter, and the cytoplasmic loop between helices 9 and 10 also contains some conserved putative regulatory residues.  相似文献   

20.
The transporter SbtA is a high affinity Na+-dependent HCO3- uptake system present in a majority of cyanobacterial clades. It functions in conjunction with CO2 uptake systems and other HCO3- uptake systems to allow cyanobacteria to accumulate high levels of HCO3- used to support efficient photosynthetic CO2 fixation via the CO2 concentrating mechanism in these species. The phoA/lacZ fusion reporter method was used to determine the membrane topology of the cyanobacterial bicarbonate transporter, SbtA (predicted size of ~39.7 kD), cloned from the freshwater strain, Synechocystis PCC6803. The structure conforms to a model featuring 10 transmembrane helices (TMHs), with a distinct 5+5 duplicated structure. Both the N- and C-terminus are outside the cell and the second half of the protein is inverted relative to the first. The first putative helix appears to lack sufficient topogenic signals for its correct orientation in the membrane and instead relies on the presence of later helices. The cytoplasmic loop between helices 5 and 6 is a likely location for regulatory mechanisms that could govern activation of the transporter, and the cytoplasmic loop between helices 9 and 10 also contains some conserved putative regulatory residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号