首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enteroaggregative Escherichia coli (EAEC) is an important cause of acute and persistent diarrhea. The defining stacked brick adherence pattern of Peruvian EAEC isolate 042 has previously been attributed to aggregative adherence fimbriae II (AAF/II), which confer aggregative adherence on laboratory E. coli strains. EAEC strains also show exceptional autoaggregation and biofilm formation, other phenotypes that have hitherto been ascribed to AAF/II. We report that EAEC 042 carries the heat-resistant agglutinin (hra1) gene, also known as hek, which encodes an outer membrane protein. Like AAF/II, the cloned EAEC 042 hra1 gene product is sufficient to confer autoaggregation, biofilm formation, and aggregative adherence on nonadherent and nonpathogenic laboratory E. coli strains. However, an 042 hra1 deletion mutant is not deficient in these phenotypes compared to the wild type. EAEC strain 042 produces a classic honeycomb or stacked brick pattern of adherence to epithelial cells. Unlike wild-type 042, the hra1 mutant typically does not form a tidy stacked brick pattern on HEp-2 cells in culture, which is definitive for EAEC. Moreover, the hra1 mutant is significantly impaired in the Caenorhabditis elegans slow kill colonization model. Our data suggest that the exceptional colonization of strain 042 is due to multiple factors and that Hra1 is an accessory EAEC colonization factor.Enteroaggregative Escherichia coli (EAEC) was originally identified as the etiologic agent of persistent diarrhea in developing countries but is gaining increasing prominence for its role in a wider spectrum of diarrheal syndromes. EAEC strains have been implicated in acute as well as persistent diarrhea among adults and children (reviewed in references 25 and 40). A recent meta-analysis found that EAEC is significantly associated with disease in every group at high risk for diarrhea, including young children, human immunodeficiency virus-positive individuals, and visitors to developing countries (24). In addition to its association with disease in epidemiological studies in developing countries, EAEC has also been identified as a principal cause of diarrheal disease in Germany, the United Kingdom, and the United States (11, 26, 51).Aggregative adherence is the defining characteristic of EAEC (38). EAEC strains adhere to the intestinal epithelium, and to epithelial cells in culture, in a characteristic two-dimensional “stacked brick” fashion. The pattern features bacteria adhering to the eukaryotic surface, other bacteria, and the solid substratum. Four types of fimbriae have so far been documented as conferring aggregative adherence (4, 14, 17, 37). Two noncontiguous plasmid loci containing the complete complement of genes encoding aggregative adherence fimbriae I (AAF/I) or AAF/II are sufficient to confer aggregative adherence on nonadherent E. coli (14, 49). The plasmid bearing type IV pili found in Serbian EAEC outbreak strain C1096 are also sufficient to confer a weak aggregative adherence phenotype on E. coli K-12 (17). AAF additionally play an essential role in production of a superfluous EAEC-associated biofilm, which could account for the association of these strains with persistent diarrhea in epidemiological studies (46).Some categories of diarrheagenic pathogens have a conserved set of adhesins which allow them to overcome flushing across the intestinal epithelium. Typical enteropathogenic E. coli isolates, for example, all possess bundle-forming pili and the outer membrane adhesin intimin, whereas atypical enteropathogenic E. coli isolates possess intimin but not bundle-forming pili (reviewed in reference 10). EAEC strains, by contrast, are considerably heterogeneous. While many EAEC strains carry genes encoding one of the known aggregative adherence fimbriae, some EAEC do not harbor any known AAF even though they do demonstrate aggregative adherence (4, 7, 13, 14). This, and the presence of multiple adhesins in most mucosal colonizers (53), points to the likelihood of other EAEC adhesins. Imuta et al. recently implicated a TolC secreted factor in adherence (27), and Montiero-Neto et al. (33) described a 58-kDa nonstructural adhesin in O111:H12 EAEC. However, the former factor is only a contributor to aggregative adherence and the latter adhesin is not found in other EAEC. Overall, nonstructural EAEC adhesins have received little attention.The outer membrane protein Tia was originally characterized as an invasin and later shown to confer adhesive properties on enterotoxigenic E. coli (ETEC) (20, 21). Fleckenstein et al. (21) observed that a tia gene probe hybridized to DNA from non-ETEC strains, one of which was EAEC strain 042. As the Southern blot data published by Fleckenstein et al. showed bands of different intensities, as well as size, between ETEC strain H10407, which carries tia, and EAEC strain 042, we hypothesized that the probe was recognizing a similar, rather than identical, gene (21).We have determined that EAEC strain 042 harbors a gene encoding the heat-resistant agglutinin 1 (hra1), a hemagglutinin originally reported from an O9:H10:K99 porcine ETEC strain. Hra1 has also been reported from uropathogenic E. coli strains and neonatal meningitis E. coli strain RS218, in which context it is otherwise known as Hek (19, 48). (The hek nomenclature was introduced after hra1, to delineate the form of the gene found in invasive human pathogens from that of a porcine isolate [19].) A role for the outer membrane protein Hra1/Hek in adherence by neonatal meningitis E. coli has recently been defined (19).Although hra1/hek has been reported from multiple pathogens, its role in colonization and virulence has only been conclusively studied in the neonatal meningitis E. coli strain RS218 (19). In this paper, we demonstrate that the EAEC hra1 gene is sufficient to confer colonization-associated phenotypes, including aggregative adherence and biofilm formation, on laboratory E. coli strains. Intriguingly, we find that although it confers these phenotypes on K-12 and is expressed in 042, hra1 is not required for in vitro colonization-associated phenotypes demonstrated by 042. The hra1 gene is, however, essential for the formation of a true stacked brick pattern in EAEC and for optimal in vivo colonization in a Caenorhabditis elegans model.  相似文献   

2.
A new principle for expression of heat-sensitive recombinant proteins in Escherichia coli at temperatures close to 4°C was experimentally evaluated. This principle was based on simultaneous expression of the target protein with chaperones (Cpn60 and Cpn10) from a psychrophilic bacterium, Oleispira antarctica RB8T, that allow E. coli to grow at high rates at 4°C (maximum growth rate, 0.28 h−1) (M. Ferrer, T. N. Chernikova, M. Yakimov, P. N. Golyshin, and K. N. Timmis, Nat. Biotechnol. 21:1266-1267, 2003). The expression of a temperature-sensitive esterase in this host at 4 to 10°C yielded enzyme specific activity that was 180-fold higher than the activity purified from the non-chaperonin-producing E. coli strain grown at 37°C (32,380 versus 190 μmol min−1 g−1). We present evidence that the increased specific activity was not due to the low growth temperature per se but was due to the fact that low temperature was beneficial to folding, with or without chaperones. This is the first report of successful use of a chaperone-based E. coli strain to express heat-labile recombinant proteins at temperatures below the theoretical minimum growth temperature of a common E. coli strain (7.5°C).  相似文献   

3.
4.
目的分析健康老年人肠道中肠集聚性大肠埃希菌(EAEC)的检出率,并探讨其毒力基因及超广谱β-内酰胺酶(ESBL)的携带情况。方法取健康老年人的粪便标本分别接种于血平板、SS平板、麦康凯平板进行细菌培养,用全自动微生物鉴定仪和质谱仪鉴定细菌到种;对分离的大肠埃希菌采用双纸片协同法检测其ESBL的表型,用PCR法扩增其EAEC毒力基因astA和aggR;ESBL表型阳性的EAEC菌株用PCR法检测其ESBL基因型。结果在175例研究对象中,共检出160株大肠埃希菌,ESBL携带率为36.30%(58/160);EAEC检出16株(10.00%),其中astA阳性14株(8.75%),aggR阳性2株(1.25%);EAEC菌株的ESBL携带率为56.25%(9/16),其基因型均为CTX-M型,其中以CTX-M-14最多,占66.70%(6/9)。结论本研究获得了健康老年人肠道中EAEC的检出率及其毒力基因和ESBL的携带情况,提示我们EAEC不仅是腹泻患者的病原菌,还可以在健康老年人群中携带,且具有较高的携带率和耐药性,提醒我们加强防范。  相似文献   

5.
The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens.  相似文献   

6.
We isolated a novel strain D5 from nodules of Acacia confusa. Under strict sterile conditions the strain could successfully nodulate Acacia confusa, A. crassicarpa and A. mangium, with nitrogenase activity ranging from 18.90 to 19.86 nmol·g−1·min−1. In the phylogenetic tree based on a complete 16S rRNA gene sequence, the sequence of strain D5 shared 99% homology with that of four species of genus Pseudomonas. The 685 bp nodA fragment amplified from strain D5 shared 95% homology with the nodA sequence of 9 species of genus Bradyrhizobium, with a genetic distance of 0.01682. The 740 bp nifH gene fragment was amplified from strain D5. This strain D5 nifH gene and Bradyrhizobium spp. formed a branch, showing 98% homology and a genetic distance of 0. The homology between this branch and the Bradyrhizobium spp. DG in another branch was 99%, with a genetic distance of 0.007906. These results indicate that this strain D5 is a new type of nitrogen-fixing bacterium.  相似文献   

7.
Streptococcus pyogenes (GAS) is a human pathogen that causes pharyngitis and invasive diseases such as toxic shock syndrome and sepsis. The upper respiratory tract is the primary reservoir from which GAS can infect new hosts and cause disease. The factors involved in colonisation are incompletely known however. Previous evidence in oral streptococci has shown that the AgI/II family proteins are involved. We hypothesized that the AspA member of this family might be involved in GAS colonization. We describe a novel mouse model of GAS colonization of the nasopharynx and lower respiratory tract to elucidate these interactions. We used two clinical M serotypes expressing AspA, and their aspA gene deletant isogenic mutants in experiments using adherence assays to respiratory epithelium, macrophage phagocytosis and neutrophil killing assays and in vivo models of respiratory tract colonisation and infection. We demonstrated the requirement for AspA in colonization of the respiratory tract. AspA mutants were cleared from the respiratory tract and were deficient in adherence to epithelial cells, and susceptible to phagocytosis. Expression of AspA in the surrogate host Lactococcus lactis protected bacteria from phagocytosis. Our results suggest that AspA has an essential role in respiratory infection, and may function as a novel anti-phagocytic factor.  相似文献   

8.
9.
10.
We present the crystal structure and biochemical characterization of Escherichia coli YbiB, a member of the hitherto uncharacterized TrpD2 protein family. Our results demonstrate that the functional diversity of proteins with a common fold can be far greater than predictable by computational annotation. The TrpD2 proteins show high structural homology to anthranilate phosphoribosyltransferase (TrpD) and nucleoside phosphorylase class II enzymes but bind with high affinity (KD = 10–100 nm) to nucleic acids without detectable sequence specificity. The difference in affinity between single- and double-stranded DNA is minor. Results suggest that multiple YbiB molecules bind to one longer DNA molecule in a cooperative manner. The YbiB protein is a homodimer that, therefore, has two electropositive DNA binding grooves. But due to negative cooperativity within the dimer, only one groove binds DNA in in vitro experiments. A monomerized variant remains able to bind DNA with similar affinity, but the negative cooperative effect is eliminated. The ybiB gene forms an operon with the DNA helicase gene dinG and is under LexA control, being induced by DNA-damaging agents. Thus, speculatively, the TrpD2 proteins may be part of the LexA-controlled SOS response in bacteria.  相似文献   

11.
Under anoxic conditions in the presence of an oxidizable cosubstrate such as glucose or glycerol, Escherichia coli converts citrate to acetate and succinate. Two enzymes are specifically required for the fermentation of the tricarboxylic acid, i.e., a citrate uptake system and citrate lyase. Here we report that the open reading frame (designated citT) located at 13.90 min on the E. coli chromosome between rna and the citrate lyase genes encodes a citrate carrier. E. coli transformed with a plasmid expressing citT was capable of aerobic growth on citrate, which provides convincing evidence for a function of CitT as a citrate carrier. Transport studies with cell suspensions of the transformed strain indicated that CitT catalyzes a homologous exchange of citrate or a heterologous exchange against succinate, fumarate, or tartrate. Since succinate is the end product of citrate fermentation in E. coli, it is likely that CitT functions in vivo as a citrate/succinate antiporter. Analysis of the primary sequence showed that CitT (487 amino acids, 53.1 kDa) is a highly hydrophobic protein with 12 putative transmembrane helices. Sequence comparisons revealed that CitT is related to the 2-oxoglutarate/malate translocator (SODiT1 gene product) from spinach chloroplasts and five bacterial gene products, none of which has yet been functionally characterized. It is suggested that the E. coli CitT protein is a member of a novel family of eubacterial transporters involved in the transport of di- and tricarboxylic acids.  相似文献   

12.
Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.  相似文献   

13.
A facultatively anaerobic, mesophilic, Gram-negative, non-motile, non-sporulated bacterium, designated strain C2, was isolated from an anaerobic digester fed with shea cake rich in tannins and aromatic compounds and previously inoculated with anaerobic sludge from the pit of a slaughterhouse, after enrichment on tannic acid. The straight rods occurred singly or in pairs. Strain C2 fermented numerous carbohydrates (fructose, galactose, glucose, lactose, mannose, maltose, melibiose, raffinose, rhamnose, ribose, saccharose, sorbitol, trehalose, and xylose) and peptides (Biotrypcase, Casamino acids, and yeast extract), producing acid and gas, and had a G + C content of 51.6 ± 0.1 mol %. Strain C2 was very closely related to Escherichia coli (= DSM 30083T) phylogenetically (similarity of 99%), genotypically (DNA homology of 79%), and phenotypically. The isolate tolerated tannic acid (hydrolyzable tannin) and decarboxylated by non-oxidative decarboxylation only p-hydroxybenzoic and vanillic acids to their corresponding phenol and guaicol, under anaerobic and aerobic conditions without further degradation. Adding glucose increased growth and the rate of conversion. High concentrations of p-hydroxybenzoic acid or vanillic acid inhibited growth, and decarboxylation could not occur completely, suggesting phenol toxicity. In contrast, the type strain of E. coli cannot metabolize p-hydroxybenzoic and vanillic acids, anaerobically or aerobically, with or without glucose added. Received: 30 July 2001 / Accepted: 17 August 2001  相似文献   

14.
15.
16.
Acetylcholine is the canonical excitatory neurotransmitter of the mammalian neuromuscular system. However, in the trematode parasite Schistosoma mansoni, cholinergic stimulation leads to muscle relaxation and a flaccid paralysis, suggesting an inhibitory mode of action. Information about the pharmacological mechanism of this inhibition is lacking. Here, we used a combination of techniques to assess the role of cholinergic receptors in schistosome motor function. The neuromuscular effects of acetylcholine are typically mediated by gated cation channels of the nicotinic receptor (nAChR) family. Bioinformatics analyses identified numerous nAChR subunits in the S. mansoni genome but, interestingly, nearly half of these subunits carried a motif normally associated with chloride-selectivity. These putative schistosome acetylcholine-gated chloride channels (SmACCs) are evolutionarily divergent from those of nematodes and form a unique clade within the larger family of nAChRs. Pharmacological and RNA interference (RNAi) behavioral screens were used to assess the role of the SmACCs in larval motor function. Treatment with antagonists produced the same effect as RNAi suppression of SmACCs; both led to a hypermotile phenotype consistent with abrogation of an inhibitory neuromuscular mediator. Antibodies were then generated against two of the SmACCs for use in immunolocalization studies. SmACC-1 and SmACC-2 localize to regions of the peripheral nervous system that innervate the body wall muscles, yet neither appears to be expressed directly on the musculature. One gene, SmACC-1, was expressed in HEK-293 cells and characterized using an iodide flux assay. The results indicate that SmACC-1 formed a functional homomeric chloride channel and was activated selectively by a panel of cholinergic agonists. The results described in this study identify a novel clade of nicotinic chloride channels that act as inhibitory modulators of schistosome neuromuscular function. Additionally, the iodide flux assay used to characterize SmACC-1 represents a new high-throughput tool for drug screening against these unique parasite ion channels.  相似文献   

17.

Background

In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification.

Methods

Specific peaks in the outbreak strain’s spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak.

Results

Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates.

Conclusions

MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.  相似文献   

18.
The nucleotide sequence of a serine tRNA from Escherichia coli   总被引:10,自引:0,他引:10  
  相似文献   

19.
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.  相似文献   

20.
The purification of a respiratory oxidase complex from Escherichia coli   总被引:3,自引:0,他引:3  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号