首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Enteroaggregative Escherichia coli (EAEC) is an important cause of acute and persistent diarrhea. The defining stacked brick adherence pattern of Peruvian EAEC isolate 042 has previously been attributed to aggregative adherence fimbriae II (AAF/II), which confer aggregative adherence on laboratory E. coli strains. EAEC strains also show exceptional autoaggregation and biofilm formation, other phenotypes that have hitherto been ascribed to AAF/II. We report that EAEC 042 carries the heat-resistant agglutinin (hra1) gene, also known as hek, which encodes an outer membrane protein. Like AAF/II, the cloned EAEC 042 hra1 gene product is sufficient to confer autoaggregation, biofilm formation, and aggregative adherence on nonadherent and nonpathogenic laboratory E. coli strains. However, an 042 hra1 deletion mutant is not deficient in these phenotypes compared to the wild type. EAEC strain 042 produces a classic honeycomb or stacked brick pattern of adherence to epithelial cells. Unlike wild-type 042, the hra1 mutant typically does not form a tidy stacked brick pattern on HEp-2 cells in culture, which is definitive for EAEC. Moreover, the hra1 mutant is significantly impaired in the Caenorhabditis elegans slow kill colonization model. Our data suggest that the exceptional colonization of strain 042 is due to multiple factors and that Hra1 is an accessory EAEC colonization factor.Enteroaggregative Escherichia coli (EAEC) was originally identified as the etiologic agent of persistent diarrhea in developing countries but is gaining increasing prominence for its role in a wider spectrum of diarrheal syndromes. EAEC strains have been implicated in acute as well as persistent diarrhea among adults and children (reviewed in references 25 and 40). A recent meta-analysis found that EAEC is significantly associated with disease in every group at high risk for diarrhea, including young children, human immunodeficiency virus-positive individuals, and visitors to developing countries (24). In addition to its association with disease in epidemiological studies in developing countries, EAEC has also been identified as a principal cause of diarrheal disease in Germany, the United Kingdom, and the United States (11, 26, 51).Aggregative adherence is the defining characteristic of EAEC (38). EAEC strains adhere to the intestinal epithelium, and to epithelial cells in culture, in a characteristic two-dimensional “stacked brick” fashion. The pattern features bacteria adhering to the eukaryotic surface, other bacteria, and the solid substratum. Four types of fimbriae have so far been documented as conferring aggregative adherence (4, 14, 17, 37). Two noncontiguous plasmid loci containing the complete complement of genes encoding aggregative adherence fimbriae I (AAF/I) or AAF/II are sufficient to confer aggregative adherence on nonadherent E. coli (14, 49). The plasmid bearing type IV pili found in Serbian EAEC outbreak strain C1096 are also sufficient to confer a weak aggregative adherence phenotype on E. coli K-12 (17). AAF additionally play an essential role in production of a superfluous EAEC-associated biofilm, which could account for the association of these strains with persistent diarrhea in epidemiological studies (46).Some categories of diarrheagenic pathogens have a conserved set of adhesins which allow them to overcome flushing across the intestinal epithelium. Typical enteropathogenic E. coli isolates, for example, all possess bundle-forming pili and the outer membrane adhesin intimin, whereas atypical enteropathogenic E. coli isolates possess intimin but not bundle-forming pili (reviewed in reference 10). EAEC strains, by contrast, are considerably heterogeneous. While many EAEC strains carry genes encoding one of the known aggregative adherence fimbriae, some EAEC do not harbor any known AAF even though they do demonstrate aggregative adherence (4, 7, 13, 14). This, and the presence of multiple adhesins in most mucosal colonizers (53), points to the likelihood of other EAEC adhesins. Imuta et al. recently implicated a TolC secreted factor in adherence (27), and Montiero-Neto et al. (33) described a 58-kDa nonstructural adhesin in O111:H12 EAEC. However, the former factor is only a contributor to aggregative adherence and the latter adhesin is not found in other EAEC. Overall, nonstructural EAEC adhesins have received little attention.The outer membrane protein Tia was originally characterized as an invasin and later shown to confer adhesive properties on enterotoxigenic E. coli (ETEC) (20, 21). Fleckenstein et al. (21) observed that a tia gene probe hybridized to DNA from non-ETEC strains, one of which was EAEC strain 042. As the Southern blot data published by Fleckenstein et al. showed bands of different intensities, as well as size, between ETEC strain H10407, which carries tia, and EAEC strain 042, we hypothesized that the probe was recognizing a similar, rather than identical, gene (21).We have determined that EAEC strain 042 harbors a gene encoding the heat-resistant agglutinin 1 (hra1), a hemagglutinin originally reported from an O9:H10:K99 porcine ETEC strain. Hra1 has also been reported from uropathogenic E. coli strains and neonatal meningitis E. coli strain RS218, in which context it is otherwise known as Hek (19, 48). (The hek nomenclature was introduced after hra1, to delineate the form of the gene found in invasive human pathogens from that of a porcine isolate [19].) A role for the outer membrane protein Hra1/Hek in adherence by neonatal meningitis E. coli has recently been defined (19).Although hra1/hek has been reported from multiple pathogens, its role in colonization and virulence has only been conclusively studied in the neonatal meningitis E. coli strain RS218 (19). In this paper, we demonstrate that the EAEC hra1 gene is sufficient to confer colonization-associated phenotypes, including aggregative adherence and biofilm formation, on laboratory E. coli strains. Intriguingly, we find that although it confers these phenotypes on K-12 and is expressed in 042, hra1 is not required for in vitro colonization-associated phenotypes demonstrated by 042. The hra1 gene is, however, essential for the formation of a true stacked brick pattern in EAEC and for optimal in vivo colonization in a Caenorhabditis elegans model.  相似文献   

2.
Seven hundred and thirty-five diarrhoeic faecal samples from children were investigated for presence of enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), diffusely adherent E. coli (DAEC) and Salmonella spp. by polymerase chain reaction (PCR) and bacterial culture. Out of 675 samples from Kashmir, 55 isolates were obtained, which carried at least one virulence gene studied. Out of the 55 isolates, 36 (65.45%) were EAEC, 18 (32.72%) were ETEC while only one isolate (1.81%) was DAEC. All the EAEC isolates were found to be typical as they possessed aggR gene. Six (16.66%) EAEC isolates carried the astA gene. Out of the 18 ETEC isolates, 13 carried the elt gene alone, four possessed both the elt and est genes and the remaining one harboured the est gene alone. Five ETEC isolates also possessed astA gene. Nineteen EAEC isolates belonged to 10 different serogroups. Serogroup O153 was most frequent. The ETEC isolates also belonged to 10 different serogroups of which O159 was most predominant. Out of 224 E. coli isolates from 60 samples of Secunderabad, 27 isolates carried at least one virulence gene. Out of 27 isolates 22 (81.48%) were typical EAEC, three (11.11%) were ETEC and two (7.4%) were DAEC. Fifteen EAEC isolates belonged to seven different serogroups with O86 as most frequent. Four EAEC isolates also possessed the astA gene. All the three ETEC isolates harboured elt gene only and belonged to three different serogroups. Two isolates of Salmonella Worthington were obtained from only two samples in Kashmir.  相似文献   

3.
4.
To determine the association of enteroaggregative (EAEC) and cell-detaching (CDEC)Escherichia coli with diarrhea of unknown origin among children from Wroc?aw (Poland),E. coli strains isolated from stool specimens of children with diarrhea were examined for mannose-resistant adherence to HEp-2 cells. EAEC were isolated from 10 of 39 (26%) children examined with diarrhea and 4 of 20 (20%) age-matched controls. CDEC were present in 14 (36%) cases of diarrhea and 7 (35%) healthy subjects. Cell-detaching activity was distinctly associated with hemolysin production. Among hemolytic CDEC strains cytotoxic necrotizing factor 1 (CNF1) synthesis prevailed among isolates obtained from cases of diarrhea (57%) in comparison with isolates obtained from healthy controls (14.3%). Although neither EAEC nor CDECE. coli strains were associated with diarrhea of children in this setting, there were differences among EAEC and CDEC strains isolated from children with and without diarrhea.  相似文献   

5.
Escherichia coli isolates (n = 300) collected from six sites in subtropical Brisbane, Australia, prior to and after storm events were tested for the presence of 11 virulence genes (VGs) specific to diarrheagenic pathotypes. The presence of eaeA, stx1, stx2, and ehxA genes specific for the enterohemorrhagic E. coli (EHEC) pathotype was detected in 56%, 6%, 10%, and 13% of isolates, respectively. The VGs astA (69%) and aggR (29%), carried by enteroaggregative (EAEC) pathotypes, were frequently detected in E. coli isolates. The enteropathogenic E. coli (EPEC) gene bfp was detected in 24% of isolates. In addition, enteroinvasive E. coli (EIEC) VG ipaH was also detected in 14% of isolates. During dry periods, isolates belonging to the EAEC pathotype were most commonly detected (23%), followed by EHEC (11%) and EPEC (11%). Conversely, a more uniform prevalence of pathotypes, EPEC (14%), EAEC (12%), EIEC (10%), EHEC (7%), and ETEC (7%), was observed after the storm events. The results of this study highlight the widespread occurrence of potentially diarrheagenic pathotypes in the urban aquatic ecosystems. While the presence of VGs in E. coli isolates alone is insufficient to determine pathogenicity, the presence of diarrheagenic E. coli pathotypes in high frequency after the storm events could lead to increased health risks if untreated storm water were to be used for nonpotable purposes and recreational activities.  相似文献   

6.
Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.  相似文献   

7.
A galactose-specific adhesin was isolated from the fimbriae of an enteroaggregative Escherichia coli (EAEC) strain. The adhesin was found to be a high molecular weight aggregate of the 18-kDa monomer. The dimeric (36 kDa) and tetrameric (76 kDa) forms appeared in sodium dodecyl sulphate polyacrylamide gel electrophoresis when a higher concentration of the adhesin was used. The IgGAD (IgG against adhesin) obtained from the immune sera raised in rabbits against purified adhesin could detect all three forms of the adhesin even from the crude fimbrial preparation. The IgGAD failed to recognize the adhesin in the presence of galactose, thereby suggesting the antibody-binding site and the sugar-binding site on the adhesin might be same or overlapping. Furthermore, the IgGAD could localize the adhesin exclusively on the fimbriae as observed in immunogold electron microscopy. The aggregative adherence of the bacteria to HEp-2 cells was reduced to 70% in the presence of the IgGAD. A glycoprotein (34 kDa) present in the membrane fraction of HEp-2 cells interacted with the purified adhesin in a galactose-specific manner. The IgGAD could recognize the adhesin from the crude fimbrial preparation of 9 out of 10 clinical isolates of EAEC strains but failed to identify any protein from the crude fimbrial preparation of Salmonella typhimurium (fim +ve as well as fim −ve strain), Vibrio cholerae (WO7) or Escherichia coli DH5α.  相似文献   

8.
The possible health risks associated with the consumption of harvested rainwater remains one of the major obstacles hampering its large-scale implementation in water limited countries such as South Africa. Rainwater tank samples collected on eight occasions during the low- and high-rainfall periods (March to August 2012) in Kleinmond, South Africa, were monitored for the presence of virulence genes associated with Escherichia coli. The identity of presumptive E. coli isolates in rainwater samples collected from 10 domestic rainwater harvesting (DRWH) tanks throughout the sampling period was confirmed through universal 16S rRNA PCR with subsequent sequencing and phylogenetic analysis. Species-specific primers were also used to routinely screen for the virulent genes, aggR, stx, eae, and ipaH found in enteroaggregative E. coli (EAEC), enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and enteroinvasive E. coli, respectively, in the rainwater samples. Of the 92 E. coli strains isolated from the rainwater using culture based techniques, 6% were presumptively positively identified as E. coli O157:H7 using 16S rRNA. Furthermore, virulent pathogenic E. coli genes were detected in 3% (EPEC and EHEC) and 16% (EAEC) of the 80 rainwater samples collected during the sampling period from the 10 DRWH tanks. This study thus contributes valuable information to the limited data available regarding the ongoing prevalence of virulent pathotypes of E. coli in harvested rainwater during a longitudinal study in a high-population-density, periurban setting.  相似文献   

9.
A multiplex PCR to differentiate typical and atypical enteropathogenic Escherichia coli (EPEC), enteroaggregative E. coli (EAEC), enterotoxigenic (ETEC), enteroinvasive E. coli (EIEC) and Shiga toxin-producing E. coli (STEC) strains was developed and evaluated. The targets selected for each group were eae and bfpA for EPEC, aggR for EAEC, elt and est for ETEC, ipaH for EIEC and stx for STEC isolates. This PCR was specific and sensitive for rapid detection of target isolates in stools. Among 79 children with acute diarrhea, this technique identified 13 (16.4%) with atypical EPEC, four (5%) with EAEC, three (3.8%) with typical EPEC, one (1.3%) with ETEC and one (1.3%) with EIEC.  相似文献   

10.

Background  

The importance of diarrhoeagenic Escherichia coli (DEC) infections in the Arabian Gulf including Kuwait is not known. The prevalence of DEC (enterotoxigenic [ETEC], enteropathogenic [EPEC], enteroinvasive [EIEC], enterohemorrhagic [EHEC] and enteroaggregative [EAEC]) was studied in 537 children ≤ 5 years old hospitalised with acute diarrhoea and 113 matched controls from two hospitals during 2005–07 by PCR assays using E. coli colony pools.  相似文献   

11.
We investigated the ability of a detoxified derivative of a Shiga toxin 2 (Stx2)-encoding bacteriophage to infect and lysogenize enteric Escherichia coli strains and to develop infectious progeny from such lysogenized strains. The stx2 gene of the patient E. coli O157:H7 isolate 3538/95 was replaced by the chloramphenicol acetyltransferase (cat) gene from plasmid pACYC184. Phage 3538(Δstx2::cat) was isolated after induction of E. coli O157:H7 strain 3538/95 with mitomycin. A variety of strains of enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Stx-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and E. coli from the physiological stool microflora were infected with 3538(Δstx2::cat), and plaque formation and lysogenic conversion of wild-type E. coli strains were investigated. With the exception of one EIEC strain, none of the E. coli strains supported the formation of plaques when used as indicators for 3538(Δstx2::cat). However, 2 of 11 EPEC, 11 of 25 STEC, 2 of 7 EAEC, 1 of 3 EIEC, and 1 of 6 E. coli isolates from the stool microflora of healthy individuals integrated the phage in their chromosomes and expressed resistance to chloramphenicol. Following induction with mitomycin, these lysogenic strains released infectious particles of 3538(Δstx2::cat) that formed plaques on a lawn of E. coli laboratory strain C600. The results of our study demonstrate that 3538(Δstx2::cat) was able to infect and lysogenize particular enteric strains of pathogenic and nonpathogenic E. coli and that the lysogens produced infectious phage progeny. Stx-encoding bacteriophages are able to spread stx genes among enteric E. coli strains.  相似文献   

12.
To examine to what extent fresh vegetables imported into Switzerland represent carriers of extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae, 169 samples of different types of fresh vegetables imported into Switzerland from the Dominican Republic, India, Thailand, and Vietnam were analyzed. Overall, 25.4% of the vegetable samples yielded one or more ESBL-producing Enterobacteriaceae, 78.3% of which were multidrug resistant. Sixty isolates were obtained: Escherichia coli, 26; Klebsiella pneumoniae, 26; Enterobacter cloacae, 6; Enterobacter aerogenes, 1; and Cronobacter sakazakii, 1. We found 29 isolates producing CTX-M-15, 8 producing CTX-M-14, 7 producing CTX-M-55, 3 producing CTX-M-65, 1 each producing CTX-M-1, CTX-M-3, CTX-M-27, and CTX-M-63, 5 producing SHV-2, 3 producing SHV-12, and 1 producing SHV-2a. Four of the E. coli isolates belonged to epidemiologically important clones: CTX-M-15-producing B2:ST131 (1 isolate), D:ST405 (1 isolate), and D:ST38 (2 isolates). One of the D:ST38 isolates belonged to the extraintestinal enteroaggregative E. coli (EAEC) D:ST38 lineage. Two of the K. pneumoniae isolates belonged to the epidemic clones sequence type 15 (ST15) and ST147. The occurrence of antibiotic-resistant pathogenic and commensal Enterobacteriaceae in imported agricultural foodstuffs constitutes a source of ESBL genes and a concern for food safety.  相似文献   

13.
The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC). Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC). After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF). The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized.  相似文献   

14.
Diarrheagenic Escherichia coli (DEC) cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG), mainly associated with enteroaggregative E. coli (EAEC), were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%), surpassing Salmonella (12%) and Shigella (9%). Predominant DEC groups were diffusely adherent E. coli (DAEC) (35%), EAEC (24%), and enteropathogenic E. coli (EPEC) (19%). Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26%) and DAEC (18%); 30% had moderate diarrhoea mainly caused by DAEC (36%), mixed DEC infections (33%) and EAEC (32%). DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6–24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3–13.9). The presence of SVG dispersin, (aatA), dispersin-translocator (aatA), enteroaggregative heat-stable toxin 1 (astA), plasmid encoded toxin (pet), cytolethal distending toxin (cdt) was higher in DEC than non-DEC strains, (36% vs 26%, P <0.0001, OR = 1.5, 95% CI, 1.3–1.8). 98% of EAEC-infected children harboured strains with SVG; 85% carried the aap-aatA gene combination, and 33% of these also carried astA. 28% of both EPEC and ETEC, and 6% of DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2%) and non-DEC strains (21% and 13%). DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.  相似文献   

15.
The penicillin-binding proteins of 11 pathogenic Escherichia coli strains, including enteropathogenic, enterotoxigenic, enteroinvasive, enteroaggregative, and enterohemorrhagic E. coli, were detected in gels following the labeling of isolated cell envelopes with [3H]benzylpenicillin. The electrophoretic profiles, sensitivities to and morphological changes induced by β-lactam antibiotics showed that the penicillin-binding proteins of most pathogenic E. coli possess structural and physiological functions similar to those of E. coli K12.  相似文献   

16.
Summary: Bacterial plasmids are self-replicating, extrachromosomal elements that are key agents of change in microbial populations. They promote the dissemination of a variety of traits, including virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare substances. Escherichia coli, perhaps the most studied of microorganisms, has been found to possess a variety of plasmid types. Included among these are plasmids associated with virulence. Several types of E. coli virulence plasmids exist, including those essential for the virulence of enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli, and extraintestinal pathogenic E. coli. Despite their diversity, these plasmids belong to a few plasmid backbones that present themselves in a conserved and syntenic manner. Thanks to some recent research, including sequence analysis of several representative plasmid genomes and molecular pathogenesis studies, the evolution of these virulence plasmids and the implications of their acquisition by E. coli are now better understood and appreciated. Here, work involving each of the E. coli virulence plasmid types is summarized, with the available plasmid genomic sequences for several E. coli pathotypes being compared in an effort to understand the evolution of these plasmid types and define their core and accessory components.  相似文献   

17.

Background  

The roles of diffusely-adherent Escherichia coli (DAEC) and enteroaggregative E. coli (EAEC) in disease are not well understood, in part because of the limitations of diagnostic tests for each of these categories of diarrhoea-causing E. coli. A HEp-2 adherence assay is the Gold Standard for detecting both EAEC and DAEC but DNA probes with limited sensitivity are also employed.  相似文献   

18.
Food and water samples from an Ethiopian community were screened for the presence of enterotoxin-producing bacteria. Using the Chinese hamster ovary cell assay, 40 of 213 isolates (18.8%) produced heat-labile (LT) enterotoxin. These LT-producing isolates comprised 33 of 177 (18.6%) strains from 24 of 68 food samples (35.3%) and 7 of 36 (19.4%) isolates of 4 of 17 water samples (23.5%). One LT-producing strain each of Salmonella emek and of Shigella dysenteriae was found. Three pseudomonads, all LT producers, produced heat-stable enterotoxin as gauged by the suckling mouse test. Two strains of LT-enterotoxigenic Escherichia coli O68 were found in water samples. No enterotoxigenic E. coli were isolated from food samples, but 13 of the LT-producing strains were Enterobacter, Klebsiella, Serratia, and Proteus species, and 7 food samples yielded more than one species of enterotoxigenic bacterium. Of the enterotoxigenic isolates from food, 15 were oxidase-positive strains of the genera Aeromonas, Pseudomonas, Achromobacter, Flavobacterium, and Vibrio. LT-enterotoxigenic Enterobacter, Acinetobacter, Klebsiella, Proteus, Providencia, and Serratia species represented 20 of the food and water isolates. Culture supernatant fluids of representative strains of oxidase-positive and oxidase-negative species giving positive reactions in Chinese hamster ovary cell tests induced fluid accumulation in rabbit ileal loops. Eight of the food samples and two of the water samples contained more than one isolate or species of enterotoxigenic bacterium. The stability of the LT production by oxidase-positive bacteria and non-E. coli strains was assessed by the rabbit skin and adrenal cell tests after 9 months and 1 year of storage, respectively, in Trypticase soy broth with glycerol at −70°C. Only 33% of the oxidase-positive strains were still LT enterotoxigenic. Of the oxidase-negative strains, 50 and 33% were LT producing at 9 months and 1 year, respectively. None of the E. coli isolates, both enterotoxigenic and nonenterotoxigenic, possessed K88, K99, or colonization factor antigen. The survey demonstrates the presence in food and water of enterotoxigenic bacteria of the same species as those isolated from cases of infantile diarrhea in the same community, although a correlation between these sources and infantile diarrhea remains to be established.  相似文献   

19.

Background

Enteroaggregative Escherichia coli (EAEC) are defined by their stacked-brick adherence pattern to human epithelial cells. There is no all-encompassing genetic marker for EAEC. The category is commonly implicated in diarrhea but research is hampered by perplexing heterogeneity.

Methodology/Principal Findings

To identify key EAEC lineages, we applied multilocus sequence typing to 126 E. coli isolates from a Nigerian case-control study that showed aggregative adherence in the HEp-2 adherence assay, and 24 other EAEC strains from diverse locations. EAEC largely belonged to the A, B1 and D phylogenetic groups and only 7 (4.6%) isolates were in the B2 cluster. As many as 96 sequence types (STs) were identified but 60 (40%) of the EAEC strains belong to or are double locus variants of STs 10, 31, and 394. The remainder did not belong to predominant complexes. The most common ST complex, with predicted ancestor ST10, included 32 (21.3%) of the isolates. Significant age-related distribution suggests that weaned children in Nigeria are at risk for diarrhea from of ST10-complex EAEC. Phylogenetic group D EAEC strains, predominantly from ST31- and ST394 complexes, represented 38 (25.3%) of all isolates, include genome-sequenced strain 042, and possessed conserved chromosomal loci.

Conclusions/Significance

We have developed a molecular phylogenetic framework, which demonstrates that although grouped by a shared phenotype, the category of ‘EAEC’ encompasses multiple pathogenic lineages. Principal among isolates from Nigeria were ST10-complex EAEC that were associated with diarrhea in children over one year and ECOR D strains that share horizontally acquired loci.  相似文献   

20.
The CS31A, F17, and F5 adhesins are usually targeted by serology-based methods to detect pathogenic Escherichia coli associated with calf enteritis. However, the virulence traits of the selected isolates are still poorly described. Here, from a set of 349 diarrheagenic E. coli isolates from cattle, we demonstrated a 70.8% concordance rate (Cohen''s kappa, 0.599) between serology- and PCR-based approaches for the detection of adhesins under field conditions. A 79% to 82.4% correspondence between the two methods was found for fimbrial adhesins, whereas major discrepancies (33%) were observed for CS31A-type antigens. Various F17A variants were found, such as F17Ac (20K) (50%), F17Aa (FY) (18.9%), F17Ab (8.1%), and F17Ad (111K) (5.4%), including a high proportion (17.6%) of new F17A internal combinations (F17Aab, F17Aac, and F17Abc) or untypeable variants. In addition, the highest proportion of pathovar-associated virulence factor (VF) genes was observed among E. coli isolates that produced F5/F41 adhesins. A specific link between the heat-stable toxins related to the enterotoxigenic E. coli (ETEC) pathovar and adhesins was identified. STa was significantly linked to F5/F41 and EAST1 to CS31A adhesins (P < 0.001), respectively, whereas NTEC was associated with F17 adhesin (P = 0.001). Clustering between phylogroups according to the adhesin types was also observed. Also, few Shiga toxin-producing E. coli (STEC) or enteropathogenic E. coli (EPEC) pathovars were identified. Finally, no statistically significant difference was observed in the occurrence of extended-spectrum beta lactamase (ESBL) production according to the adhesins expressed by the isolates (P = 0.09). Altogether, this study gives new insights into the relationship between adhesins, VF, and antimicrobial resistance in calf enteritis and supports the need for further standardization of methodologies for such approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号