首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The most direct technique for studying calcium, which is an essential element for pollen tube growth, is Ca2+ imaging. Because membranes are relatively impermeable, the loading of fluorescent Ca2+ probes into plant cells is a challenging task. Thus, we have developed a new method of loading fluo-4 acetoxymethyl ester into cells that uses a cell lysis solution to improve the introduction of this fluorescent dye into pollen tubes. Using this method, the loading times were reduced to 15 min. Furthermore, loading did not have to be performed at low (4°C) temperatures and was successful at room temperature, and pluronic F-127 was not required, which would theoretically allow for the loading of an unlimited number of cells. Moreover, the method can also be used to fluorescently stain root hairs.  相似文献   

2.
Potassium (K+) influx into pollen tubes via K+ transporters is essential for pollen tube growth; however, the mechanism by which K+ transporters are regulated in pollen tubes remains unknown. Here, we report that Arabidopsis thaliana Ca2+-dependent protein kinase11 (CPK11) and CPK24 are involved in Ca2+-dependent regulation of the inward K+ (K+in) channels in pollen tubes. Using patch-clamp analysis, we demonstrated that K+in currents of pollen tube protoplasts were inhibited by elevated [Ca2+]cyt. However, disruption of CPK11 or CPK24 completely impaired the Ca2+-dependent inhibition of K+in currents and enhanced pollen tube growth. Moreover, the cpk11 cpk24 double mutant exhibited similar phenotypes as the corresponding single mutants, suggesting that these two CDPKs function in the same signaling pathway. Bimolecular fluorescence complementation and coimmunoprecipitation experiments showed that CPK11 could interact with CPK24 in vivo. Furthermore, CPK11 phosphorylated the N terminus of CPK24 in vitro, suggesting that these two CDPKs work together as part of a kinase cascade. Electrophysiological assays demonstrated that the Shaker pollen K+in channel is the main contributor to pollen tube K+in currents and acts as the downstream target of the CPK11-CPK24 pathway. We conclude that CPK11 and CPK24 together mediate the Ca2+-dependent inhibition of K+in channels and participate in the regulation of pollen tube growth in Arabidopsis.  相似文献   

3.
4.
Using Ca2+-selective microelectrodes and fura 2-dextran ratio imaging, the cytosolic free [Ca2+] was measured in Sinapis alba root hair cells. Both methods yielded comparable results, i.e. values between 158 to 251 nM for the basal [Ca2+] of the cells and an elevated [Ca2+] of 446 to 707 nM in the tip region. The zone of elevated [Ca2+] reaches 40 to 60 [mu]m into the cell and is congruent with the region of inwardly directed Ca2+ net currents measured with an external Ca2+- selective vibrating electrode. The channel-blocker La3+ eliminates these currents, stops growth, and almost completely eliminates the cytosolic [Ca2+] gradient without affecting the basal level of the ion. Growth is also inhibited by pressure-injected dibromo-1,2-bis(o-aminophenoxy)ethane-N,N,N[prime],N[prime]-tetraacetic acid, which causes a decrease in the [Ca2+] in the tip in a concentration-dependent manner. Indole-3-acetic acid, used as a model stimulus, decreases cytosolic free [Ca2+] by 0.2 to 0.3 pCa units in the tip, but only by about 0.1 pCa unit in the shank. Nongrowing root hairs may or may not display a [Ca2+] gradient, but still reversibly respond to external stimuli such as La3+, Ca2+, or indole-3-acetic acid with changes in cytosolic free [Ca2+]. During short time periods, dicyclohexylcarbodiimide inhibition of the plasma membrane H+-ATPase, which stops growth, does not abolish the [Ca2+] gradient, nor does it change significantly the basal [Ca2+] level. We conclude that the cytosolic [Ca2+] gradient and an elevated [Ca2+] in the tip, as in other tip-growing cells, is essential for tip growth in root hairs; however, its presence does not indicate growth under all circumstances. We argue that with respect to Ca2+, tip growth regulation and responses to external signals may not interfere with each other. Finally, we suggest that the combination of the methods applied adds considerably to our understanding of the role of cytosolic free [Ca2+] in signal transduction and cellular growth.  相似文献   

5.
Ca2+、pH在花粉及萌发花粉管生长中的作用研究进展   总被引:11,自引:0,他引:11  
花粉正常萌发并生长是精细胞顺利到达胚囊并实现受精作用的前提,因而是高等植物有性生殖的一个关键环节。花粉管生长涉及一系列过程,而花粉(或花粉管)内外的Ca^2 和pH的变化与花粉萌发、花粉管生长有着密切的关系。比较详细地论述了Ca^2 和pH在花粉萌发、花粉管生长过程中的分布特点、生理功能及分子机制。  相似文献   

6.
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.  相似文献   

7.
AtGDPD-Like3是编码甘油磷酸二酯磷酸二酯酶(GDPD)类似基因,拟南芥该家族基因AtGDPD-Like3突变体shv3存在严重的根毛发育缺陷。为了鉴定AtGDPD-Like3关键氨基酸位点,我们构建S538A、V556A和D628A单点突变AtGDPD-Like3,分别转化atgdpdl3突变体并观察其恢复根毛缺陷程度。结果显示V556A、D628A位点突变AtGDPD-Like3完全恢复atgdpdl3根毛生长缺陷表型,但S538A突变AtGDPD-Like3只是部分恢复根毛缺陷。这些结果表明Ser538是AtGDPD-Like3较为关键的氨基酸位点,突变影响其蛋白质功能行使,同时暗示AtGDPD-Like3还存在其它的关键氨基酸位点。此研究结果为进一步探究AtGDPD-Like3蛋白功能行使的作用机制奠定了基础。  相似文献   

8.
Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants.  相似文献   

9.
Type II NAD(P)H:quinone oxidoreductases are single polypeptide proteins widespread in the living world. They bypass the first site of respiratory energy conservation, constituted by the type I NADH dehydrogenases. To investigate substrate specificities and Ca(2+) binding properties of seven predicted type II NAD(P)H dehydrogenases of Arabidopsis thaliana we have produced them as T7-tagged fusion proteins in Escherichia coli. The NDB1 and NDB2 enzymes were found to bind Ca(2+), and a single amino acid substitution in the EF hand motif of NDB1 abolished the Ca(2+) binding. NDB2 and NDB4 functionally complemented an E. coli mutant deficient in endogenous type I and type II NADH dehydrogenases. This demonstrates that these two plant enzymes can substitute for the NADH dehydrogenases in the bacterial respiratory chain. Three NDB-type enzymes displayed distinct catalytic profiles with substrate specificities and Ca(2+) stimulation being considerably affected by changes in pH and substrate concentrations. Under physiologically relevant conditions, the NDB1 fusion protein acted as a Ca(2+)-dependent NADPH dehydrogenase. NDB2 and NDB4 fusion proteins were NADH-specific, and NDB2 was stimulated by Ca(2+). The observed activity profiles of the NDB-type enzymes provide a fundament for understanding the mitochondrial system for direct oxidation of cytosolic NAD(P)H in plants. Our findings also suggest different modes of regulation and metabolic roles for the analyzed A. thaliana enzymes.  相似文献   

10.
Ca(2+) levels in plants, fungi, and bacteria are controlled in part by H(+)/Ca(2+) exchangers; however, the relationship between primary sequence and biological activity of these transporters has not been reported. The Arabidopsis H(+)/cation exchangers, CAX1 and CAX2, were identified by their ability to suppress yeast mutants defective in vacuolar Ca(2+) transport. CAX1 has a much higher capacity for Ca(2+) transport than CAX2. An Arabidopsis thaliana homolog of CAX1, CAX3, is 77% identical (93% similar) and, when expressed in yeast, localized to the vacuole but did not suppress yeast mutants defective in vacuolar Ca(2+) transport. Chimeric constructs and site-directed mutagenesis showed that CAX3 could suppress yeast vacuolar Ca(2+) transport mutants if a nine-amino acid region of CAX1 was inserted into CAX3 (CAX3-9). Biochemical analysis in yeast showed CAX3-9 had 36% of the H(+)/Ca(2+) exchange activity as compared with CAX1; however, CAX3-9 and CAX1 appear to differ in their transport of other ions. Exchanging the nine-amino acid region of CAX1 into CAX2 doubled yeast vacuolar Ca(2+) transport but did not appear to alter the transport of other ions. This nine-amino acid region is highly variable among the plant CAX-like transporters. These findings suggest that this region is involved in CAX-mediated Ca(2+) specificity.  相似文献   

11.
Specific inhibitors of the secretory pathway represent important tools for investigation of cell wall synthesis and tip growth in pollen tubes. Brefeldin A completely inhibits germination of Nicotiana tabacum pollen tubes at 2.2 μM. Ultrastructural investigation of pollen tube cytoplasm showed that brefeldin A caused the appearance of reticular structures and “brefeldin A compartments” containing unesterified pectins. Monensin caused inhibition of pollen tube germination at 80 nM. The drug induced swelling of the Golgi cisternae, many of which contained methyl-esterified pectins. Cytochalasin D was effective at 1 μg/ml, the inhibition of germination being fully reversible. Application of the drug caused accumulation of secretory vesicles containing methyl-esterified pectin around the dictyosomes. In contrast to brefeldin A and monensin, cytochalasin D caused a slowdown of cytoplasmic streaming. Monensin, but not the other drugs, caused a considerable decrease in pollen tube diameter. The characterization and quantification of the effects of the drugs on pollen tubes represents a necessary prerequisite for their application in physiological studies.  相似文献   

12.
Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64–positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis.  相似文献   

13.
《Developmental cell》2022,57(17):2081-2094.e7
  1. Download : Download high-res image (109KB)
  2. Download : Download full-size image
  相似文献   

14.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase进行超微细胞化学定位研究,旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用,以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明:在正常状态下,根毛区细胞质内Ca2+较少,主要位于质膜附近和液泡中,Ca2+-ATPase主要定位于质膜和液泡膜,有一定活性。在0.448%NaHCO3胁迫下,根毛区细胞质中Ca2+增多,液泡中Ca2+减少,且主要集中于液泡膜附近,质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多,而液泡中Ca2+极少,Ca2+-ATPase活性也降低。以上结果表明,Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

15.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase 进行超微细胞化学定位研究, 旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用, 以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明: 在正常状态下, 根毛区细胞质内Ca2+较少, 主要位于质膜附近和液泡中, Ca2+-ATPase主要定位于质膜和液泡膜, 有一定活性。在0.448%NaHCO3胁迫下, 根毛区细胞质中Ca2+增多, 液泡中Ca2+减少, 且主要集中于液泡膜附近, 质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多, 而液泡中Ca2+极少, Ca2+-ATPase活性也降低。以上结果表明, Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

16.
Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87–95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87–95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.  相似文献   

17.
Pollen tube growth is an essential aspect of plant reproduction because it is the mechanism through which nonmotile sperm cells are delivered to ovules, thus allowing fertilization to occur. A pollen tube is a single cell that only grows at the tip, and this tip growth has been shown to depend on actin filaments. It is generally assumed that myosin-driven movements along these actin filaments are required to sustain the high growth rates of pollen tubes. We tested this conjecture by examining seed set, pollen fitness, and pollen tube growth for knockout mutants of five of the six myosin XI genes expressed in pollen of Arabidopsis (Arabidopsis thaliana). Single mutants had little or no reduction in overall fertility, whereas double mutants of highly similar pollen myosins had greater defects in pollen tube growth. In particular, myo11c1 myo11c2 pollen tubes grew more slowly than wild-type pollen tubes, which resulted in reduced fitness compared with the wild type and a drastic reduction in seed set. Golgi stack and peroxisome movements were also significantly reduced, and actin filaments were less organized in myo11c1 myo11c2 pollen tubes. Interestingly, the movement of yellow fluorescent protein-RabA4d-labeled vesicles and their accumulation at pollen tube tips were not affected in the myo11c1 myo11c2 double mutant, demonstrating functional specialization among myosin isoforms. We conclude that class XI myosins are required for organelle motility, actin organization, and optimal growth of pollen tubes.Pollen tubes play a crucial role in flowering plant reproduction. A pollen tube is the vegetative cell of the male gametophyte. It undergoes rapid polarized growth in order to transport the two nonmotile sperm cells to an ovule. This rapid growth is supported by the constant delivery of secretory vesicles to the pollen tube tip, where they fuse with the plasma membrane to enlarge the cell (Bove et al., 2008; Bou Daher and Geitmann, 2011; Chebli et al., 2013). This vesicle delivery is assumed to be driven by the rapid movement of organelles and cytosol throughout the cell, a process that is commonly referred to as cytoplasmic streaming (Shimmen, 2007). Cytoplasmic streaming in angiosperm pollen tubes forms a reverse fountain: organelles moving toward the tip travel along the cell membrane, while organelles moving away from the tip travel through the center of the tube (Heslop-Harrison and Heslop-Harrison, 1990; Derksen et al., 2002). Drug treatments revealed that pollen tube cytoplasmic streaming and tip growth depend on actin filaments (Franke et al., 1972; Mascarenhas and Lafountain, 1972; Heslop-Harrison and Heslop-Harrison, 1989; Parton et al., 2001; Vidali et al., 2001). Curiously, very low concentrations of actin polymerization inhibitors can prevent growth without completely stopping cytoplasmic streaming, indicating that cytoplasmic streaming is not sufficient for pollen tube growth (Vidali et al., 2001). At the same time, however, drug treatments have not been able to specifically inhibit cytoplasmic streaming; thus, it is unknown whether cytoplasmic streaming is necessary for pollen tube growth.Myosins are actin-based motor proteins that actively transport organelles throughout the cell and are responsible for cytoplasmic streaming in plants (Shimmen, 2007; Sparkes, 2011; Madison and Nebenführ, 2013). Myosins can be grouped into at least 30 different classes based on amino acid sequence similarity of the motor domain, of which only class VIII and class XI myosins are found in plants (Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Class VIII and class XI myosins have similar domain architecture. The N-terminal motor domain binds actin and hydrolyzes ATP (Tominaga et al., 2003) and is often preceded by an SH3-like (for sarcoma homology3) domain of unknown function. The neck domain, containing IQ (Ile-Gln) motifs, acts as a lever arm and is bound by calmodulin-like proteins that mediate calcium regulation of motor activity (Kinkema and Schiefelbein, 1994; Yokota et al., 1999; Tominaga et al., 2012). The coiled-coil domain facilitates dimerization (Li and Nebenführ, 2008), and the globular tail functions as the cargo-binding domain (Li and Nebenführ, 2007). Class VIII myosins also contain an N-terminal extension, MyTH8 (for myosin tail homology8; Mühlhausen and Kollmar, 2013), and class XI myosins contain a dilute domain in the C-terminal globular tail (Kinkema and Schiefelbein, 1994; Odronitz and Kollmar, 2007; Sebé-Pedrós et al., 2014). Recently, Mühlhausen and Kollmar (2013) proposed a new nomenclature for plant myosins based on a comprehensive phylogenetic analysis of all known plant myosins that clearly identifies paralogs and makes interspecies comparisons easier (Madison and Nebenführ, 2013).The localization of class VIII myosins, as determined by immunolocalization and the expression of fluorescently labeled full-length or tail constructs, has implicated these myosins in cell-to-cell communication, cell division, and endocytosis in angiosperms and moss (Reichelt et al., 1999; Van Damme et al., 2004; Avisar et al., 2008; Golomb et al., 2008; Sattarzadeh et al., 2008; Yuan et al., 2011; Haraguchi et al., 2014; Wu and Bezanilla, 2014). On the other hand, class XI myosin mutants have been studied extensively in Arabidopsis (Arabidopsis thaliana), which revealed roles for class XI myosins in cell expansion and organelle motility (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Very few studies have examined the reproductive tissues of class XI myosin mutants. In rice (Oryza sativa), one myosin XI was shown to be required for normal pollen development under short-day conditions (Jiang et al., 2007). In Arabidopsis, class XI myosins are required for stigmatic papillae elongation, which is necessary for normal fertility (Ojangu et al., 2012). Even though pollen tubes of myosin XI mutants have not been examined, the tip growth of another tip-growing plant cell has been thoroughly examined in myosin mutants. Root hairs are tubular outgrowths of root epidermal cells that function to increase the surface area of the root for water and nutrient uptake. Two myosin XI mutants have shorter root hairs, of which the myo11e1 (xik; myosin XI K) mutation has been shown to be associated with a slower root hair growth rate and reduced actin dynamics compared with the wild type (Ojangu et al., 2007; Peremyslov et al., 2008; Park and Nebenführ, 2013). Higher order mutants have a further reduction in root hair growth and have altered actin organization (Prokhnevsky et al., 2008; Peremyslov et al., 2010). Disruption of actin organization was also observed in myosin XI mutants of the moss Physcomitrella patens (Vidali et al., 2010), where these motors appear to coordinate the formation of actin filaments in the apical dome of the tip-growing protonemal cells (Furt et al., 2013). Interestingly, organelle movements in P. patens are much slower than in angiosperms and do not seem to depend on myosin motors (Furt et al., 2012).The function of myosins in pollen tubes is currently not known, although it is generally assumed that they are responsible for the prominent cytoplasmic streaming observed in these cells by associating with organelle surfaces (Kohno and Shimmen, 1988; Shimmen, 2007). Myosin from lily (Lilium longiflorum) pollen tubes was isolated biochemically and shown to move actin filaments with a speed of about 8 µm s−1 (Yokota and Shimmen, 1994) in a calcium-dependent manner (Yokota et al., 1999). Antibodies against this myosin labeled small structures in both the tip region and along the shank (Yokota et al., 1995), consistent with the proposed role of this motor in moving secretory vesicles to the apex.In Arabidopsis, six of 13 myosin XI genes are highly expressed in pollen: Myo11A1 (XIA), Myo11A2 (XID), Myo11B1 (XIB), Myo11C1 (XIC), Myo11C2 (XIE), and Myo11D (XIJ; Peremyslov et al., 2011; Sparkes, 2011). The original gene names (Reddy and Day, 2001) are given in parentheses. Myo11D is the only short-tailed myosin XI in Arabidopsis (Mühlhausen and Kollmar, 2013) and lacks the typical myosin XI globular tail involved in cargo binding (Li and Nebenführ, 2007). The remaining genes have the same domain architecture as the conventional class XI myosins that have been shown to be involved in the elongation of trichomes, stigmatic papillae, and root hairs (Ojangu et al., 2007, 2012; Peremyslov et al., 2008, 2010; Prokhnevsky et al., 2008; Park and Nebenführ, 2013). Therefore, we predicted that these five pollen-expressed, conventional class XI myosins are required for the rapid elongation of pollen tubes. In this study, we examined transfer DNA (T-DNA) insertion mutants of Myo11A1, Myo11A2, Myo11B1, Myo11C1, and Myo11C2 for defects in fertility and pollen tube growth. Organelle motility and actin organization were also examined in myo11c1 myo11c2 pollen tubes.  相似文献   

18.
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785–amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes'' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.  相似文献   

19.
Hydrogen peroxide is an important regulatory agent in plants. This study demonstrates that exogenous H2O2 application to Arabidopsis thaliana root epidermis results in dose-dependent transient increases in net Ca2+ influx. The magnitude and duration of the transients were greater in the elongation zone than in the mature epidermis. In both regions, treatment with the cation channel blocker Gd3+ prevented H2O2-induced net Ca2+ influx, consistent with application of exogenous H2O2 resulting in the activation of plasma membrane Gd3+-sensitive Ca2+-influx pathways. Application of 10 mm H2O2 to the external plasma membrane face of elongation zone epidermal protoplasts resulted in the appearance of a hyperpolarization-activated Ca2+-permeable conductance. This conductance differed from that previously characterized as being responsive to extracellular hydroxyl radicals. In contrast, in mature epidermal protoplasts a plasma membrane hyperpolarization-activated Ca2+-permeable channel was activated only when H2O2 was present at the intracellular membrane face. Channel open probability increased with intracellular [H2O2] and at hyperpolarized voltages. Unitary conductance decreased thus: Ba2+ > Ca2+ (14.5 pS) > Mg2+ > Zn2+ (20 mM external cation, 1 mM H2O2). Lanthanides and Zn2+ (but not TEA+) suppressed the open probability without affecting current amplitude. The results suggest spatial heterogeneity and differential sensitivity of Ca2+ channel activation by reactive oxygen species in the root that could underpin signalling.  相似文献   

20.
The role of 1-aminocyclopropane-1-carboxylic acid (ACC) in pollen germination was investigated in several plant species. It was found that ACC stimulated in vitro pollen germination in all five species of plants tested. EGTA and phenothiazine inhibited the increase in the germination rate induced by ACC. Free Ca2+ levels in the cytosol ([Ca2+]cyt) in ungerminated and germinated pollen were 136 and 287 nm, respectively. Adding 0.25 mm ACC to the germination medium increased the [Ca2+]cyt in germinated pollen up to 450 nm. When pollen was treated with both 0.25 mm ACC and 3.6 μm inositol 1,4,5-trisphosphate, the [Ca2+]cyt increased to 850 nm, and pollen germination was also stimulated. In the presence of Li+, an inhibitor of inositol monophosphatase, the [Ca2+]cyt was reduced to 155 nm, and the ACC-stimulated pollen germination was inhibited. The data provided evidence for the involvement of Ca2+ as a messenger in the stimulative effect of ACC on pollen germination. Received December 1, 1995; accepted February 18, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号