首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infectivity associated with prion disease sets it apart from a large group of late-onset neurodegenerative disorders that shares the characteristics of protein aggregation and neurodegeneration. The unconventional infectious agent, PrP(Sc), is an aberrantly folded form of the normal prion protein (PrP(C)) and the PrP(C)-to-PrP(Sc) conversion is a critical pathogenic step in prion disease. Using the Protein Misfolding Cyclic Amplification technique, we converted folded bacterially expressed recombinant PrP into a proteinase K-resistant and aggregated conformation (rPrP-res) in the presence of anionic lipid and RNA molecules. Moreover, high prion infectivity was demonstrated by intracerebral inoculation of rPrP-res into wild-type mice, which caused prion disease with a short incubation period. The establishment of the in vitro recombinant PrP conversion assay makes it feasible for us to explore the molecular basis behind the intriguing properties associated with prion infectivity.  相似文献   

2.
The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies.  相似文献   

3.
During prion infections, the cellular glycosylphosphatidylinositol-anchored glycoprotein PrP is converted into a conformational isoform. This abnormal conformer is thought to recruit and convert the normal cellular PrP into a likeness of itself and is proposed to be the infectious agent. We investigated the distribution of the PrP protein on the surface of Rov cells, an epithelial cell line highly permissive to prion multiplication, and we found that PrP is primarily expressed on the apical side. We further show that prion transmission to Rov cells is much more efficient if infectivity contacts the apical side, indicating that the apical and basolateral sides of Rov cells are not equally competent for prion infection and adding prions to the list of the conventional infectious agents (viruses and bacteria) that infect epithelial cells in a polarized manner. These data raise the possibility that apically expressed PrP may be involved in this polarized process of infection. This would add further support for a crucial role of PrP at the cell surface in prion infection of target cells.  相似文献   

4.
Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the “prion-like” spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.  相似文献   

5.
The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP-res, PrP(sc)) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re-evaluated total PrP (sensitive and resistant) and used a cell-based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU-CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non-PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU-CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU-CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non-PrP proteins may protect agent nucleic acids in infectious particles.  相似文献   

6.
During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res.  相似文献   

7.
Transmissible spongiform encepahalopathies (TSEs) are fatal diseases that damage the central nervous system. TSEs are unique in that they may be inherited, infectious or spontaneous. The central pathogenic agent is thought to be a conformationally distinct form (PrP(Sc;)) of the endogenous prion protein(PrP(c)), which is high in beta-sheet content and is resistant to proteases; infectivity is thought to involve formation of PrP(Sc) via imprinting of abnormal conformation on the normal form of the protein (PrP(c)) by seeds of PrP(Sc). A number of compounds found to inhibit the conversion of PrP(c) to PrP(Sc) have been proposed as therapeutics to halt TSEs.  相似文献   

8.
An abnormal isoform of the prion protein (PrP) designated PrPSc is the major, or possibly the only, component of infectious prions. Structural studies of PrPSc have been impeded by its lack of solubility under conditions in which infectivity is retained. Among the many detergents examined, only treatment with the ionic detergent sodium dodecyl sulfate (SDS) or Sarkosyl followed by sonication dispersed prion rods which are composed of PrP 27-30, an N-terminally truncated form of PrPSc. After ultracentrifugation at 100,000 x g for 1 h, approximately 30% of the PrP 27-30 and scrapie infectivity were found in the supernatant, which was fractionated by sedimentation through 5 to 20% sucrose gradients. Near the top of the gradient, spherical particles with an observed sedimentation coefficient of approximately 6S, approximately 10 mm in diameter and composed of four to six PrP 27-30 molecules, were found. The spheres could be digested with proteinase K and exhibited little, if any, scrapie infectivity. When the prion rods were disrupted in SDS and the entire sample was fractionated by sucrose gradient centrifugation, a lipid-rich fraction at the meniscus composed of fragments of rods and heterogeneous particles containing high levels of prion infectivity was found. Fractions adjacent to the meniscus also contained spherical particles. Circular dichroism of the spheres revealed 60% alpha-helical content; addition of 25% acetonitrile induced aggregates high in beta sheet but remaining devoid of infectivity. Although the highly purified spherical oligomers of PrP 27-30 lack infectivity, they may provide an excellent substrate for determining conditions of renaturation under which prion particles regain infectivity.  相似文献   

9.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

10.
A protease-resistant protein is a structural component of the scrapie prion   总被引:67,自引:0,他引:67  
Fractions purified from scrapie-infected hamster brain contain a unique protein, designated PrP. It was labeled with N-succinimidyl 3-(4-hydroxy-5-[125I]-iodophenyl) propionate, which did not alter the titer of the scrapie prion. The concentration of PrP was found to be directly proportional to the titer of the infectious prion. Both PrP and prion infectivity were resistant for 2 hr at 37 degrees C to hydrolysis by proteinase K under nondenaturing conditions. Prolonging the digestion resulted in a concomitant decrease in both PrP and the scrapie prion. When the amino-acid-specific proteases trypsin or SV-8 protease were used instead of proteinase K, no change in either PrP or the prion was detected. The parallel changes between PrP and the prion provide evidence that PrP is a structural component of the infectious prion. Our findings also suggest that the prion contains only one major protein, namely PrP.  相似文献   

11.
Baskakov IV 《The FEBS journal》2007,274(3):576-587
The discovery of prion disease transmission in mammals, as well as a non-Mendelian type of inheritance in yeast, has led to the establishment of a new concept in biology, the prion hypothesis. The prion hypothesis postulates that an abnormal protein conformation propagates itself in an autocatalytic manner using the normal isoform of the same protein as a substrate and thereby acts either as a transmissible agent of disease (in mammals), or as a heritable determinant of phenotype (in yeast and fungus). While the prion biology of yeast and fungus supports this idea strongly, the direct proof of the prion hypothesis in mammals, specifically the reconstitution of the disease-associated isoform of the prion protein (PrP(Sc)) in vitro de novo from noninfectious prion protein, has been difficult to achieve despite many years of effort. The present review summarizes our current knowledge about the biochemical nature of the prion infectious agent and structure of PrP(Sc), describes potential strategies for generating prion infectivity de novo and provides some insight on why the reconstitution of infectivity has been difficult to achieve in vitro. Several hypotheses are proposed to explain the apparently low infectivity of the first generation of recently reported synthetic mammalian prions.  相似文献   

12.
Prions are proteinaceous infectious agents responsible for the transmission of prion diseases. The lack of a procedure for cultivating prions in the laboratory has been a major limitation to the study of the unorthodox nature of this infectious agent and the molecular mechanism by which the normal prion protein (PrP(C)) is converted into the abnormal isoform (PrP(Sc)). Protein misfolding cyclic amplification (PMCA), described in detail in this protocol, is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA involves incubating materials containing minute amounts of infectious prions with an excess of PrP(C) and boosting the conversion by cycles of sonication to fragment the converting units, thereby leading to accelerated prion replication. PMCA is able to detect the equivalent of a single molecule of infectious PrP(Sc) and propagate prions that maintain high infectivity, strain properties and species specificity. A single PMCA assay takes little more than 3 d to replicate a large amount of prions, which could take years in an in vivo situation. Since its invention 10 years ago, PMCA has helped to answer fundamental questions about this intriguing infectious agent and has been broadly applied in research areas that include the food industry, blood bank safety and human and veterinary disease diagnosis.  相似文献   

13.
The scrapie isoform of the prion protein, PrP(Sc), is the only identified component of the infectious prion, an agent causing neurodegenerative diseases such as Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Following proteolysis, PrP(Sc) is trimmed to a fragment designated PrP 27-30. Both PrP(Sc) and PrP 27-30 molecules tend to aggregate and precipitate as amyloid rods when membranes from prion-infected brain are extracted with detergents. Although prion rods were also shown to contain lipids and sugar polymers, no physiological role has yet been attributed to these molecules. In this work, we show that prion infectivity can be reconstituted by combining Me(2)SO-solubilized PrP 27-30, which at best contained low prion infectivity, with nonprotein components of prion rods (heavy fraction after deproteination, originating from a scrapie-infected hamster brain), which did not present any infectivity. Whereas heparanase digestion of the heavy fraction after deproteination (originating from a scrapie-infected hamster brain), before its combination with solubilized PrP 27-30, considerably reduced the reconstitution of infectivity, preliminary results suggest that infectivity can be greatly increased by combining nonaggregated protease-resistant PrP with heparan sulfate, a known component of amyloid plaques in the brain. We submit that whereas PrP 27-30 is probably the obligatory template for the conversion of PrP(C) to PrP(Sc), sulfated sugar polymers may play an important role in the pathogenesis of prion diseases.  相似文献   

14.
The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replication. We have introduced into PrP knockout mice transgenes encoding wild-type PrP or PrP lacking 26 or 49 amino-proximal amino acids which are protease susceptible in PrP(Sc). Inoculation with prions led to fatal disease, prion propagation and accumulation of PrP(Sc) in mice expressing both wild-type and truncated PrPs. Within the framework of the 'protein only' hypothesis, this means that the amino-proximal segment of PrP(C) is not required either for its susceptibility to conversion into the pathogenic, infectious form of PrP or for the generation of PrP(Sc).  相似文献   

15.
The transformation of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is implicated in the invariably fatal transmissible spongiform encephalopathies. To identify a mechanism to prevent the undesired PrP(C)-->PrP(Sc) transformation, we investigated the interactions of recombinant prion proteins with a number of potential therapeutic agents which inhibit the PrP(Sc) formation, infectivity, and the accumulation of the misfolded form. We show that the prion aggregates formed in the presence of six compounds have no beta-structure, which is typical of the infectious form, and possess considerably higher alpha-helical content than the normal PrP(C). The investigated compounds stimulate the formation of alpha-helices and the destruction of beta-structure. They prevent the transformation of alpha-helical structure into beta-sheets. Probably, this is the reason for the resistance to PrP(C)-->PrP(Sc) transformation in the presence of these compounds. The results may be useful for the future therapy of neurodegenerative diseases.  相似文献   

16.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

17.
Identification of cellular proteins binding to the scrapie prion protein   总被引:2,自引:0,他引:2  
The scrapie prion protein (PrPSc) is an abnormal isoform of the cellular protein PrPc. PrPSc is found only in animals with scrapie or other prion diseases. The invariable association of PrPSc with infectivity suggests that PrPSc is a component of the infectious particle. In this study, we report the identification of two proteins from hamster brain of 45 and 110 kDa (denoted PrP ligands Pli 45 and Pli 110) which were able to bind to PrP 27-30, the protease-resistant core of PrPSc on ligand blots. Pli 45 and Pli 110 also bound PrPC. Both Pli's had isoelectric points of approximately 5. The dissociation rate constant of the Pli 45/PrP 27-30 complex was 3 x 10(-6) s-1. Amino acid and protein sequence analyses were performed on purified Pli 45. Both the composition and the sequence were almost identical with those predicted for mouse glial fibrillary acidic protein (GFAP). Furthermore, antibodies to Pli 45 reacted with recombinant GFAP. The identification of proteins which interact with the PrP isoforms in normal and diseased brain may provide new insights into the function of PrPC and into the molecular mechanisms underlying prion diseases.  相似文献   

18.
The prion protein undergoes a profound conformational change when the cellular isoform (PrP(C)) is converted into the disease-causing form (PrP(Sc)). Limited proteolysis of PrP(Sc) produces PrP 27-30, which readily polymerizes into amyloid. To study the relationship between PrP amyloid and infectivity, we employed organic solvents that perturb protein conformation. Hexafluoro-2-propanol (HFIP), which promotes alpha-helix formation, modified the ultrastructure of PrP amyloid and decreased the beta-sheet content as well as prion infectivity. HFIP reversibly decreased the binding of Congo red dye to the PrP amyloid rods while inactivation of prion infectivity was irreversible. In contrast, 1,1,1-trifluoro-2-propanol (TFIP) did not inactivate prion infectivity but like HFIP, TFIP did alter the morphology of the rods and abolished Congo red binding. Solubilization using various solvents and detergents produced monomeric and dimeric PrP that lacked infectivity. Proteinase K resistance of detergent-treated PrP 27-30 showed no correlation with scrapie infectivity. Our results separate prion infectivity from the amyloid properties of PrP 27-30 and underscore the dependence of prion infectivity on PrP(Sc) conformation. These findings also demonstrate that the specific beta-sheet-rich structures required for prion infectivity can be differentiated from those required for amyloid formation.  相似文献   

19.
Defining the molecular structure of the transmissible spongiform encephalopathy (TSE) agent is important both for underpinning risk assessments and for developing and understanding decontamination strategies. Recent studies have shown that oligomeric particles comprising 14-28 prion protein (PrP) molecules are much more infectious than larger fibrils (prion rods) or indeed smaller oligomers (trimers) and PrP monomers. Here, results from deactivation studies (with alkali, heat, hexane or formaldehyde) are interpreted in terms of the infectious nucleation seed comprising 14-28 PrP molecules held together by interactions with amphipathic phospholipid (PL) or more probably sphingolipid (SL) from the host. According to the PrP/lipid hypothesis, the strength of the protein/lipid interactions accounts for the high thermostability of TSE infectivity and for differences in thermostability between strains. The implications of the molecular biophysics data for environmental TSE risk assessments are discussed with respect to behaviour in soil. While formaldehyde appears to cause inactivation of scrapie infectivity by increasing the ID(50), the dose-response is complicated by apparent heterogeneity between hamster subpopulations in susceptibility. The process of inactivation by formaldehyde may be due to cross-linking the highly infectious 14-28 PrP oligomers into larger, but less infectious aggregates. This process appears more reversible in some hamster subpopulations than others.  相似文献   

20.
Converting the prion protein: what makes the protein infectious   总被引:1,自引:0,他引:1  
The discovery of prion disease transmission in mammals, as well as a non-Mendelian type of inheritance in yeast, has led to the establishment of a new concept in biology, the prion hypothesis. The prion hypothesis postulates that an abnormal protein conformation propagates itself in an autocatalytic manner via recruitment of the normal isoform of the same protein as a substrate, and thereby acts either as a transmissible agent of disease (in mammals) or as a heritable determinant of phenotype (in yeast and fungus). Although reconstitution of fully infectious PrP(Sc)in vitro from synthetic components has not yet been achieved, numerous lines of evidence indicate that the prion protein is the major and essential component, if not the only one, of the prion infectious agent. This article summarizes our current knowledge about the chemical nature of the prion infectious agent, describes potential strategies and challenges related to the generation of prion infectivity de novo, proposes new hypotheses to explain the apparently low infectivity observed in the first synthetic mammalian prions, and describes plausible effects of chemical modifications on prion conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号