共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Inhibition of E6-induced degradation of its cellular substrates by novel blocking peptides 总被引:7,自引:0,他引:7
Sterlinko Grm H Weber M Elston R McIntosh P Griffin H Banks L Doorbar J 《Journal of molecular biology》2004,335(4):971-985
The E6 oncoprotein derived from the tumour-associated human papillomavirus (HPV) types induces the ubiquitin-mediated degradation of several cellular proteins by conjugating them with the cellular ubiquitin ligase E6-AP. This is a HECT domain-containing ligase that was originally identified through its involvement in the E6-mediated degradation of the cellular tumour suppressor protein p53. Here we have investigated, in more detail, the nature of the E6/E6-AP interaction using binding peptides isolated from an E6-specific library. The selected peptides were either predicted or shown to have an alpha-helical core resembling the E6-binding motif on E6-AP, as well as amino acid alterations that increased their affinity for E6. These peptides were potent inhibitors of the E6/E6-AP interaction. Further analysis of the effects of these peptides on the ability of E6 to direct the proteolytic degradation of its various substrates, including p53, Dlg and the MAGI family of proteins, as well as using E6-AP immunodepletion, revealed striking differences in the mechanism by which E6 targets its cellular substrates for degradation. These results suggest that the site on E6 bound by E6-AP is also most likely occupied by other, as yet unidentified, ubiquitin ligases. 相似文献
3.
Salwa Sebti Christine Prébois Esther Pérez-Gracia Chantal Bauvy Fabienne Desmots Nelly Pirot Céline Gongora Anne-Sophie Bach Andrew V Hubberstey Valérie Palissot Guy Berchem Patrice Codogno Laetitia K Linares Emmanuelle Liaudet-Coopman Sophie Pattingre 《Autophagy》2014,10(7):1341-1342
We recently reported that BAG6/BAT3 (BCL2-associated athanogene 6) is essential for basal and starvation-induced autophagy in E18.5 bag6−/− mouse embryos and in mouse embryonic fibroblasts (MEFs) through the modulation of the EP300/p300-dependent acetylation of TRP53 and autophagy-related (ATG) proteins. We observed that BAG6 increases TRP53 acetylation during starvation and pro-autophagic TRP53-target gene expression. BAG6 also decreases the EP300 dependent-acetylation of ATG5, ATG7, and LC3-I, posttranslational modifications that inhibit autophagy. In addition, in the absence of BAG6 or when using a mutant of BAG6 exclusively located in the cytoplasm, autophagy is inhibited, ATG7 is hyperacetylated, TRP53 acetylation is abrogated, and EP300 accumulates in the cytoplasm indicating that BAG6 is involved in the regulation of the nuclear localization of EP300. We also reported that the interaction between BAG6 and EP300 occurs in the cytoplasm rather than the nucleus. Moreover, during starvation, EP300 is transported to the nucleus in a BAG6-dependent manner. We concluded that BAG6 regulates autophagy by controlling the localization of EP300 and its accessibility to nuclear (TRP53) and cytoplasmic (ATGs) substrates. 相似文献
4.
We recently reported that MDM2, a negative feedback regulator of the tumor suppressor p53, inhibits p300/CREB-binding protein-associated factor (PCAF)-mediated p53 acetylation. Our further study showed that MDM2 also regulates the stability of PCAF. MDM2 ubiquitinated PCAF in vitro and in cells. PCAF ubiquitination occurred at the N terminus and in the nucleus, as the nuclear localization signal sequence-deletion mutant of MDM2, which localized in the cytoplasm and degraded p53, was unable to degrade nuclear PCAF. Restriction of PCAF in the nucleus by leptomycin B did not affect MDM2-mediated PCAF degradation. Consistently, overexpression of MDM2 in p53 null cells caused the reduction of the protein level of PCAF, but not the mRNA level. Conversely, PCAF levels were higher in MDM2-deficient mouse p53(-/-)/mdm2(-/-) embryonic fibroblast (MEF) cells than that in MDM2-containing MEF cells. Furthermore, MDM2 reduced the half-life of PCAF by 50%. These results demonstrate that MDM2 regulates the stability of PCAF by ubiquitinating and degrading this protein. 相似文献
5.
6.
7.
p300/CBP及其相关因子PCAF与转录调控 总被引:1,自引:0,他引:1
p300/CBP及相关因子PCAF具有乙酰转移酶活性,能通过乙酰化组蛋白和非组蛋白的方式参与基因的转录调控.同时,它们能在转录因子和基本转录复合物之间起到桥梁作用,而且也能为整合多种转录因子提供支架,是一种典型的转录辅激活子. p300/CBP与细胞周期调控、细胞凋亡以及癌症的发生等过程之间有着直接的联系。本文概括了p300/CBP与PCAF的基本特性,并简要介绍它们与其他蛋白之间的相互作用,特别是E1A的最新研究进展。 相似文献
8.
9.
Yang H Wei W Menconi M Hasselgren PO 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(1):R337-R334
Muscle proteolysis during sepsis and other catabolic conditions is, at least in part, regulated by glucocorticoids. Dexamethasone-treated myotubes are a commonly used in vitro model of muscle wasting. We reported recently that treatment of cultured L6 myotubes with dexamethasone resulted in increased gene and protein expression of the nuclear cofactor p300 but it is not known whether glucocorticoids upregulate p300 histone acetyl transferase (HAT) activity in muscle and whether p300/HAT activity regulates glucocorticoid-induced muscle proteolysis. Here, we found that treatment of cultured L6 myotubes with dexamethasone resulted in increased nuclear p300/HAT activity. Treatment of myotubes with p300 siRNA or transfection of muscle cells with a plasmid expressing p300 that was mutated in its HAT activity domain blocked the dexamethasone-induced increase in protein degradation, supporting a role of p300/HAT in glucocorticoid-induced muscle proteolysis. In addition to increased HAT activity, treatment of the myotubes with dexamethasone resulted in reduced nuclear expression and activity of histone deacetylases (HDACs) 3 and 6. When myotubes were treated with the HDAC inhibitor trichostatin A, protein degradation increased to the same degree as in dexamethasone-treated myotubes. The results suggest that glucocorticoids increase HAT and decrease HDAC activities in muscle, changes that both favor hyperacetylation. The results also provide evidence that dexamethasone-induced protein degradation in cultured myotubes is, at least in part, regulated by p300/HAT activity. 相似文献
10.
Neuroblastoma-derived tumor cells, unlike cells from other tumor types, characteristically express a wildtype but cytoplasmically sequestered p53 protein. To ascertain whether the p53 in these cells retained any physiological activity, we inactivated it in SK-N-SH cells, a neuroblastoma-derived cell line, by introducing the human papilloma virus type 16 E6 expression plasmid. Parent SK-N-SH cell cultures are composed of two cell types exhibiting characteristic morphologies designated neuroblastic (N-type) or substrate-adherent fibroblastic (S-type) cells, both of which have been shown to spontaneously transdifferentiate or interconvert. We report here that down-regulation of p53 resulted in conversion of SK-N-SH cells to the substrate-adherent fibroblast-like S-type cells. The morphologic conversion was accompanied by a loss of neurofilament expression, a marker for the neuronal N-type cells, an increase in the expression of vimentin, and a lack of responsiveness to retinoic acid-induced neuronal differentiation. Importantly, we did not observe N-type cells in the E6-transfected cell population, suggesting that they were incapable of transdifferentiating to the N-type morphology. We also tested the ability of these E6-transfected S-type cells to form colonies in soft agar and observed a markedly reduced capacity of these cells to do so when compared with the parent and mutant E6-transfected cells. These results suggest that p53 is required for the maintenance of the neuroblastic tumorigenic phenotype. 相似文献
11.
12.
13.
14.
E6AP-dependent degradation of DLG4/PSD95 by high-risk human papillomavirus type 18 E6 protein 下载免费PDF全文
Handa K Yugawa T Narisawa-Saito M Ohno S Fujita M Kiyono T 《Journal of virology》2007,81(3):1379-1389
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers. 相似文献
15.
16.
17.
18.
Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration 总被引:12,自引:0,他引:12
Rouaux C Jokic N Mbebi C Boutillier S Loeffler JP Boutillier AL 《The EMBO journal》2003,22(24):6537-6549
19.
20.
The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 总被引:218,自引:0,他引:218
The E6 protein encoded by the oncogenic human papillomavirus types 16 and 18 is one of two viral products expressed in HPV-associated cancers. E6 is an oncoprotein which cooperates with E7 to immortalize primary human keratinocytes. Insight into the mechanism by which E6 functions in oncogenesis is provided by the observation that the E6 protein encoded by HPV-16 and HPV-18 can complex the wild-type p53 protein in vitro. Wild-type p53 gene has tumor suppressor properties, and is a target for several of the oncoproteins encoded by DNA tumor viruses. In this study we demonstrate that the E6 proteins of the oncogenic HPVs that bind p53 stimulate the degradation of p53. The E6-promoted degradation of p53 is ATP dependent and involves the ubiquitin-dependent protease system. Selective degradation of cellular proteins such as p53 with negative regulatory functions provides a novel mechanism of action for dominant-acting oncoproteins. 相似文献