首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial chronic stress that originates from defective mitochondria is implicated in a growing list of human diseases. To enhance understanding of pathophysiology of chronic mitochondrial dysfunction we investigated human osteosarcoma cells with 2 types of chronic stress: corresponding to the mutation in ATP synthase subunit 6 encoded by mtDNA (NARP syndrome-mild stress) and to a total lack of mtDNA (Rho0 cells-heavy stress). We previously found that selenium influenced mitochondrial stress response and lowered ROS production. Therefore, in this study effect of selenite on other mitochondrial parameters was investigated. We showed that presence of selenium improved survival of starved cells, modified organization of mitochondrial network in NARP cybrids and decreased cytosolic calcium level in NARP and Rho0 cells. Selenium did not affect mitochondrial membrane potential, ATP level, activity of ATP synthase and activity of complex II of the respiratory chain.  相似文献   

2.
Mitochondrial diseases originate from mutations in mitochondrial or nuclear genes encoding for mitochondrial proteome. Neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) syndrome is associated with the T8993G transversion in ATP6 gene which results in substitution at the very conservative site in the subunit 6 of mitochondrial ATP synthase. Defects in the mitochondrial respiratory chain and the ATPase are considered to be accompanied by changes in the generation of reactive oxygen species (ROS). This study aimed to elucidate effects of selenium on ROS and antioxidant system of NARP cybrid cells with 98% of T8993G mutation load. We found that selenium decreased ROS generation and increased the level and activity of antioxidant enzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Therefore, we propose selenium to be a promising therapeutic agent not only in the case of NARP syndrome but also other diseases associated with mitochondrial dysfunctions and oxidative stress.  相似文献   

3.
Supplementation of selenium has been shown to protect cells against free radical mediated cell damage. The objectives of this study are to examine whether supplementation of selenium stimulates mitochondrial biogenesis signaling pathways and whether selenium enhances mitochondrial functional performance. Murine hippocampal neuronal HT22 cells were treated with sodium selenite for 24 hours. Mitochondrial biogenesis markers, mitochondrial respiratory rate and activities of mitochondrial electron transport chain complexes were measured and compared to non-treated cells. The results revealed that treatment of selenium to the HT22 cells elevated the levels of nuclear mitochondrial biogenesis regulators PGC-1α and NRF1, as well as mitochondrial proteins cytochrome c and cytochrome c oxidase IV (COX IV). These effects are associated with phosphorylation of Akt and cAMP response element-binding (CREB). Supplementation of selenium significantly increased mitochondrial respiration and improved the activities of mitochondrial respiratory complexes. We conclude that selenium activates mitochondrial biogenesis signaling pathway and improves mitochondrial function. These effects may be associated with modulation of AKT-CREB pathway.  相似文献   

4.
5.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   

6.
7.
8.
Transient opening of the mitochondrial permeability transition pore plays a crucial role in hypoxic preconditioning-induced protection. Recently, the cyclophilin-D component of the mitochondrial permeability transition pore has been shown to interact with and regulate the F1F0-ATP synthase. However, the precise role of the F1F0-ATP synthase and the interaction between cyclophilin-D and F1F0-ATP synthase in the mitochondrial permeability transition pore and hypoxic preconditioning remain uncertain. Here we found that a 1-h hypoxic preconditioning delayed apoptosis and improved cell survival after stimulation with various apoptotic inducers including H2O2, ionomycin, and arachidonic acid in mitochondrial DNA T8993G mutation (NARP) osteosarcoma 143B cybrids, an F1F0-ATP synthase defect cell model. This hypoxic preconditioning protected NARP cybrid cells against focal laser irradiation-induced oxidative stress by suppressing reactive oxygen species formation and preventing the depletion of cardiolipin. Furthermore, the protective functions of transient opening of the mitochondrial permeability transition pore in both NARP cybrids and wild-type 143B cells can be augmented by hypoxic preconditioning. Disruption of the interaction between cyclophilin-D and F1F0-ATP synthase by cyclosporin A attenuated the mitochondrial protection induced by hypoxic preconditioning in both NARP cybrids and wild-type 143B cells. Our results demonstrate that the interaction between cyclophilin-D and F1F0-ATP synthase is important in the hypoxic preconditioning-induced cell protection. This finding improves our understanding of the mechanism of mitochondrial permeability transition pore opening in cells in response to hypoxic preconditioning, and will be helpful in further developing new pharmacological agents targeting hypoxia–reoxygenation injury and mitochondria-mediated cell death  相似文献   

9.
10.
Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation   总被引:3,自引:0,他引:3  
The pathogenic mechanisms of the A1555G mitochondrial DNA mutation in the 12S rRNA gene, associated with maternally inherited sensorineural deafness, are largely unknown. Previous studies have suggested an involvement of nuclear factor(s). To address this issue cybrids were generated by fusing osteosarcoma cells devoid of mtDNA with enucleated fibroblasts from two genetically unrelated patients. Furthermore, to determine the contribution, if any, of the mitochondrial and nuclear genomes, separately or in combination, in the expression of the disease phenotype, transmitochondrial fibroblasts were constructed using control and patient's fibroblasts as nuclear donors and homoplasmic mutant or wild-type cybrids as mitochondrial donors. Detailed analysis of mutant and wild-type cybrids from both patients and transmitochondrial fibroblast clones did not reveal any respiratory chain dysfunction suggesting that, if nuclear factors do indeed act as modifier agents, they may be tissue-specific. However, in the presence of high concentrations of neomycin or paromomycin, but not of streptomycin, mutant cells exhibit a decrease in the growth rate, when compared to wild-type cells. The decrease did not correlate with the rate of synthesis or stability of mitochondrial DNA-encoded subunits or respiratory chain activity. Further studies are required to determine the underlying biochemical defect.  相似文献   

11.
Polycystic ovarian syndrome (PCOS) is a disorder characterized by oligomenorrhea, anovulation, and hyperandrogenism. Altered mitochondrial biogenesis can result in hyperandrogenism. The goal of this study was to examine the effect of vitamin D3 on mitochondrial biogenesis of the granulosa cells in the PCOS-induced mouse model. Vitamin D3 applies its effect via the mitogen-activated pathway kinase-extracellular signal-regulated kinases (MAPK-ERK1/2) pathway. The PCOS mouse model was induced by the injection of dehydroepiandrosterone (DHEA). Isolated granulosa cells were subsequently treated with vitamin D3, MAPK activator, and MAPK inhibitor. Gene expression levels were measured using real-time polymerase chain reaction. MAPK proteins were investigated by western blot analysis. We also determined reactive oxygen species (ROS) levels with 2′, 7′-dichlorofluorescein diacetate. Mitochondrial membrane potential (mtMP) was also measured by TMJC1. Mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1-α and nuclear respiratory factor), antioxidant (superoxide dismutase, glutathione peroxidase, and catalase), and antiapoptotic (B-cell lymphoma-2) genes were upregulated in the PCOS mice that treated with vitamin D3 compared with the PCOS mice without any treatment. Vitamin D3 and MAPK activator-treated groups also reduced ROS levels compared with the nontreated PCOS group. In summary, vitamin D3 and MAPK activator increased the levels of mitochondrial biogenesis, MAPK pathway, and mtMP markers, while concomitantly decreased ROS levels in granulosa cells of the PCOS-induced mice. This study suggests that vitamin D3 may improve mitochondrial biogenesis through stimulation of the MAPK pathway in cultured granulosa cells of DHEA-induced PCOS mice which yet to be investigated.  相似文献   

12.
13.
14.
15.
16.
《Reproductive biology》2021,21(4):100563
Increased production of reactive oxygen species (ROS) in granulosa cells (GCs) causes oxidative stress (OS) and plays a role in pathogenesis of polycystic ovary syndrome (PCOS). Sulforaphane (SFN) has received a great deal of attention as potent antioxidant because of its ability to induce expression of antioxidant enzymes through nuclear factor (erythroid-derived 2)-like 2 (NRF2) signaling pathway. Therefore, the present study was done to investigate the protective effect of SFN against OS in granulosa-lutein cells (GLCs) of patients with PCOS through activation of AMP-activated protein kinase (AMPK)/AKT/NRF2 signaling pathway. GLCs were isolated from patients with PCOS and healthy fertile women, as control group, during egg retrieval procedure. Level of intracellular ROS and apoptosis was determined in the isolated cells. For investigating the protective effect of SFN against ROS production and apoptosis in GLCs, the cells were cultured for 24 h in the presence or absence of SFN. Finally, expression of AMPK, AKT, and NRF2 proteins and genes was evaluated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The results indicated the increased ROS and apoptosis levels in GLCs isolated from patients with PCOS compared to the control group. Addition of SFN to culture medium of GLCs of patients with PCOS reduced intracellular ROS and apoptosis levels, and increased expression of AMPK, AKT, and NRF2 proteins and genes. Our findings demonstrated the protective effect of SFN against OS by lowering level of ROS and apoptosis possibly through activation of AMPK, AKT, and NRF2 proteins and genes expression.  相似文献   

17.
18.
19.
20.
Chen HF  Chen CY  Lin TH  Huang ZW  Chi TH  Ma YS  Wu SB  Wei YH  Hsieh M 《The FEBS journal》2012,279(16):2987-3001
Mitochondrial DNA (mtDNA) mutations are associated with a large number of neuromuscular diseases. Myoclonus epilepsy with ragged-red fibers (MERRF) syndrome is a mitochondrial disease inherited through the maternal lineage. The most common mutation in MERRF syndrome, the A8344G mutation of mtDNA, is associated with severe defects in mitochondrial protein synthesis, which impair the assembly and function of the respiratory chain. We have previously shown that there is a decreased level of heat shock protein 27 (HSP27) in lymphoblastoid cells derived from a MERRF patient and in cytoplasmic hybrids (cybrids) harboring the A8344G mutation of mtDNA. In the present study, we found a dramatic decrease in the level of phosphorylated HSP27 (p-HSP27) in the mutant cybrids. Even though the steady-state level of p-HSP27 was reduced in the mutant cybrids, normal phosphorylation and dephosphorylation were observed upon exposure to stress, indicating normal kinase and phosphatase activities. To explore the roles that p-HSP27 may play, transfection experiments with HSP27 mutants, in which three specific serines were replaced with alanine or aspartic acid, showed that the phosphomimicking HSP27 desensitized mutant cybrids to apoptotic stress induced by staurosporine (STS). After heat shock stress, p-HSP27 was found to enter the nucleus immediately, and with a prolonged interval of recovery, p-HSP27 returned to the cytoplasm in wild-type cybrids but not in mutant cybrids. The translocation of p-HSP27 was correlated with cell viability, as shown by the increased number of apoptotic cells after p-HSP27 returned to the cytoplasm. In summary, our results demonstrate that p-HSP27 provides significant protection when cells are exposed to different stresses in the cell model of MERRF syndrome. Therapeutic agents targeting anomalous HSP27 phosphorylation might represent a potential treatment for mitochondrial diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号