首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stoynova-Bakalova E  Petrov P 《Planta》2006,223(6):1256-1262
The temporal and spatial effects of exogenous cytokinins on both cell expansion and division activity in the plate meristem of cultured zucchini cotyledons were studied. N 6-benzylaminopurine (1–100 μM) and N-(2-chloro-4pyridyl)-N′-phenylurea (4PU-30) (0.1–100 μM) greatly stimulated the cell growth and division. They provoked multiple cell cycles, formation of larger clusters of daughter cells and an increase of the final number of cells. Both cytokinins led to earlier achievement of final cotyledon size and shortened the cell doubling time. By contrast to the purine cytokinin, phenylurea cytokinin 4PU-30 enlarged the cotyledon predominantly in length. Zeatin and kinetin were less effective, particularly in stimulating cell expansion. In low concentrations, all cytokinins were more effective in stimulating division activity rather than expansion. The cells in the cotyledon margins displayed a higher division activity, especially when treated with exogenous cytokinins. The final cotyledon and cluster areas were not of the strict proportional dependence upon the number of their cells. These results provide a novel example where stimulated cell division fails to evoke a respective increase in the final organ size.  相似文献   

2.
The jasmonates are well studied in the context of plant defence but increasingly are also recognised as playing roles in development. In many systems, jasmonates antagonise the effects of cytokinins. The aim of the present work was to elucidate interactions between methyl jasmonate and cytokinin (benzyladenine) in regulating growth of zucchini (Cucurbita pepo L., cv. Cocozelle, var. Tripolis) cotyledons, taking advantage of the ability to simultaneously quantify cell enlargement and division from paradermal sections of the first palisade layer. Growth regulators were applied to cotyledons, excised from dry seeds and grown in darkness. Cytokinin stimulated expansion and division whereas, surprisingly, jasmonate stimulated expansion but inhibited division. Jasmonate antagonised the stimulating effect of cytokinin on division but worked cooperatively with cytokinin in increasing expansion. However, expansion with jasmonate was more isotropic than with cytokinin. Jasmonate also stimulated the loss of cellular inclusions and soluble protein. Soluble proteins revealed a partial antagonism between jasmonate and cytokinin. These results illustrate the complex interplay between jasmonates and cytokinin in the regulatory network of cotyledon development following germination.  相似文献   

3.
The content of cytokinins and pigments together with the morphological parameters and fresh weight were estimated in durum wheat (Triticum durum Desf.) plants 2–4 days after introduction into their rhizosphere of an aliquot of Bacillus suspension using the strains that differed in their ability of producing cytokinins. The experiments were performed under laboratory conditions at the optimum light intensity and mineral nutrition. Inoculation with microorganisms incapable to synthesize cytokinins did not affect the total cytokinin content in the wheat plants, whereas the presence of cytokinin-producing microorganisms in the rhizosphere was accompanied by a considerable increase in the total cytokinin content and the accumulation of individual hormones. On the second day after inoculation, a dramatic increase in zeatin riboside and zeatin O-glucoside contents was observed in the roots, and at the next day the accumulation of zeatin riboside and zeatin was registered in the shoots of treated plants. The increase in cytokinin content promoted plant growth (the increased leaf length and width and a faster accumulation of plant fresh and dry weight). Plant treatment with a substance obtained from microorganisms incapable to synthesize hormones resulted in the insignificant growth stimulation. Plant treatment with a substance obtained from cytokinin-producing microorganisms increased leaf chlorophyll content; in this case, the level of chlorophylls was comparable to that observed in the plants treated with a synthetic cytokinin benzyladenine. The role of cytokinins of microbial origin as a factor providing for growth-stimulating effect of bacteria on plants is discussed.  相似文献   

4.
This study analysed the dynamics of cell production and extension, and how these were affected by applied gibberellic acid (GA3), during internode development in dwarf peas (Pisum sativum L. cv. Meteor). Image analysis was used to obtain cell number and length data for entire cell columns along the epidermis, the two outermost cortical layers, and the pith, from internode 7, over a time period covering the whole of the internode's growth phase. For a few days following the inception of an internode at the shoot apex, little further growth occurred, and there was no significant effect of GA3 on cell division or cell extension. The subsequent growth of the internode was stimulated more than fourfold by GA3 as a result of the production of more than twice the number of cells, which were twice as long. At least 96.5% of the cells of the mature internode were actually formed within the internode itself during this period of growth, demonstrating that the internode cells themselves represent the morphogenetic site of response to GA3. Mitoses and cell extension occurred along the full length of the internode throughout its development. The daily changes in cell numbers were modelled by the Richards function, and manipulations of the fitted functions to reveal time trends of absolute and specific cell production rates were performed for each stem tissue. The increase in cell numbers in the +GA3 plants was brought about by an increase in the rate of cell production, over a shorter time interval; specific cell production rates declined continuously from initial rapid rates in the +GA3 epidermis and pith, but declined more slowly in the cortex. The control (−GA3) epidermis and cortex cells exhibited a constant specific cell production rate (i.e. purely exponential) for several days. Cell extension rates were calculated so as to compensate for the size-reduction effects of concurrent cell division. These calculations confirmed that `real' cell extension rates were higher in the +GA3 internodes. Models of the cellular controls of internode growth, based on the estimated dynamics of cell division and extension, are discussed. Received: 1 July 1997 / Accepted: 30 July 1997  相似文献   

5.
Using DNA fingerprinting by pulse‐field gel electrophoresis and repetitive extragenic pallindromic (REP)‐polymerase chain reaction (PCR), two distinct groups were confirmed among 64 Acidovorax avenae subsp. citrulli strains collected from a range of cucurbitaceous hosts in the USA, China, Taiwan, Thailand, Canada, Australia, Brazil and Israel. Eighty‐two percent of the group I strains were recovered from non‐watermelon hosts and the subspecies type strain was the only member of this group that utilized l ‐leucine as a sole carbon source. On the contrary, 94% of the group II strains were recovered from watermelon and 96% of them utilized l ‐leucine. Two‐week‐old watermelon cv. Crimson sweet, cantaloupe cv. Athena, pumpkin cv. Lumina and squash cv. Early yellow crookneck seedlings were susceptible to A. avenae subsp. citrulli strains representing each group with the exception of the subspecies type strain. Overall, seedlings of watermelon cv. Crimson Sweet were most susceptible to A. avenae subsp. citrulli infection followed by cantaloupe, pumpkin and squash. Group II strains were more aggressive watermelon than on other hosts. On the contrary, group I strains were moderately aggressive on all cucurbit hosts tested.  相似文献   

6.
A mathematical framework for modeling biological cells from a physicochemical perspective is described. Cells modeled within this framework consist of at least two regions, including a cytosolic volume encapsulated by a membrane surface. The cytosol is viewed as a well-stirred chemical reactor capable of changing volume while the membrane is assumed to be an oriented 2-D surface capable of changing surface area. Two physical properties of the cell, namely volume and surface area, are determined by (and determine) the reaction dynamics generated from a set of chemical reactions designed to be occurring in the cell. This framework allows the modeling of complex cellular behaviors, including self-replication. This capability is illustrated by constructing two self-replicating prototypical whole-cell models. One protocell was designed to be of minimal complexity; the other to incorporate a previously reported well-known mechanism of the eukaryotic cell cycle. In both cases, self-replicative behavior was achieved by seeking stable physically possible oscillations in concentrations and surface-to-volume ratio, and by synchronizing the period of such oscillations to the doubling of cytosolic volume and membrane surface area. Rather than being enforced externally or artificially, growth and division occur naturally as a consequence of the assumed chemical mechanism operating within the framework.  相似文献   

7.
In the zucchini squash, Cucurbita pepo, a well coordinated abscission of the female flower during fruit set is essential to obtain a fruit of commercial value. In Spain zucchini is mainly produced in greenhouses in Almería, where high temperatures during the spring-summer period provoke a cultivar-dependent defect in fruits known as the “sticky flower” syndrome. This disorder is characterised by an arrest in growth and maturation of floral organs, and a lack of female floral abscission, thus diminishing fruit shelf-life, commercial quality and value. The aim of the present work was to improve knowledge of the abscission process in C. pepo to better understand the fundamental causes of this disorder. The anatomical analysis of abscission shows a well defined male floral abscission zone (AZ), few hours after anthesis, which differs from the female zone which is not differentiated from the adjacent tissue until the abscission process has begun, and which occurs as a consequence of AZ cell enlargement and the dissolution of their cell walls. To evaluate the role of ethylene and auxins in the regulation of floral abscission in zucchini we performed several treatments, with: ethylene, added as 0.25% ethrel solution; AVG, the inhibitor of ethylene synthesis, at 100 μM; indol-3-acetic acid, 100 μM; and TIBA, the inhibitor of auxin polar transport, at 10 mM. These treatments show that ethylene is an accelerator of zucchini floral abscission, and also promotes abscission in isolated AZs of sticky flowers. On the other hand, IAA delays abscission of the female flowers, whilst the inhibitor of auxin polar transport promotes it. The activity of the cell wall hydrolytic enzymes, polygalacturonase and cellulase, sharply increased just before the shedding of zucchini floral organs (72 h after anthesis). Moreover, both enzyme activities were induced by ethylene, which partly explains the ethylene promoting effect.  相似文献   

8.
Background and Aims: Plant aerial development is well known to be affected by daylength in terms of the timing and developmental stage of floraltransition. Arabidopsis thaliana is a ‘long day’plant in which the time to flower is delayed by short days andleaf number is increased. The aim of the work presented herewas to determine the effects of different day lengths on individualleaf area expansion. The effect of flower emergence per se onthe regulation of leaf expansion was also tested in this study. Methods: Care was taken to ensure that day length was the only sourceof micro-meteorological variation. The dynamics of individualleaf expansion were analysed in Ler and Col-0 plants grown underfive day lengths in five independent experiments. Responsesat cellular level were analysed in Ler plants grown under variousday lengths and treatments to alter the onset of flowering. Key Results: When the same leaf position was compared, the final leaf areaand both the relative and absolute rates of leaf expansion weredecreased by short days, whereas the duration of leaf expansionwas increased. Epidermal cell number and cell area were alsoaltered by day-length treatments and some of these responsescould be mimicked by manipulating the date of flowering. Conclusions: Both the dynamics and cellular bases of leaf development arealtered by differences in day length even when visible phenotypesare absent. To some extent, cell area and its response to daylength are controlled by whole plant control mechanisms associatedwith the onset of flowering.  相似文献   

9.
Katanin, a microtubule‐severing enzyme, consists of two subunits: the catalytic subunit P60, and the regulatory subunit P80. In several species, P80 functions in meiotic spindle organization, the flagella biogenesis, the neuronal development, and the male gamete production. However,the P80 function in higher plants remains elusive. In this study, we found that there are three katanin P80 orthologs(OsKTN80a, OsKTN80b, and OsKTN80c) in Oryza sativa L.Overexpression of OsKTN80a caused the retarded root growth of rice seedlings. Further investigation indicates that the retained root growth was caused by the repressed cell elongation in the elongation zone and the stalled cytokinesis in the division zone in the root tip. The in vivo examination suggests that OsKTN80a acts as a microtubule stabilizer. We prove that OsKTN80a, possibly associated with OsKTN60, is involved in root growth via regulating the cell elongation and division.  相似文献   

10.
Effect of temperature on the growth of individual cucumber fruits   总被引:2,自引:0,他引:2  
In order to study the effect of temperature on the growth of individual fruits in cucumber (cucumis sativus L. cv. Corona), fruits were grown at 17. 5. 20,25 and 30°C continuously or the fruit temperature was changed from 17. 5 to 27.5°C or vice versa. Fruit development appeared to be closely related to the temperature sum. When the growth of a fruit was not constrained by assimilate supply, a decrease in growing period with increasing temperature was more than compensated for by a strong increase in growth rate, resulting in an increase in final fruit weight. However, when the growth of a fruit was constrained by assimilate supply, the increase in growth rate with increasing temperature was small and did not compensate for the decrease in growing period, resulting in a decrease in final fruit weight. Determinations of cell number and size showed that the effect of temperature on fruit growth was due to effects on cell expansion rather than on cell division. When growth was not constrained by assimilate supply. However, when assimilate supply did constrain fruit growth the number of cells per fruit decreased with increasing temperature, while the effect on cell size was negligible. In all stages of fruit development, the growth rate of a cucumber fruit responded within one day to a change in temperature. It was not irreversibly impaired by a low temperature (17. 5°C) during the early development of a fruit. A high temperature treatment (27. 5°C), however, had a great effect on the growth rate of a fruit after the temperature treatment had terminated. At all stages of fruit development (even before anthesis) a period of four days at 27. 5°C resulted in a pronounced stimulation of the growth rate afterwards at 17. 5°C.  相似文献   

11.
The relationship between genotype, tissue age and endogenous cytokinin levels on adventitious bud formation on Lachenalia leaf tissue were investigated. The genotypes studied, showed a variation in bud formation. The hybrid explants responded differently to factorial combinations of BA and NAA. The growth regulators could not substitute for the regeneration potential of the genotype. Tissue age had a pronounced effect on regeneration potential. Young tissue formed the largest number of buds. An interaction between tissue age and genotype was detected. Cytokinin levels in young leaf tissue were higher than in older tissue. In young tissue no relationship was observed between the cytokinin level and the number of buds formed. However, in older tissue it appears as if a relatively low endogenous cytokinin level enhanced bud formation.Abbreviations BA benzyladenine - NAA naphthalene-1-acetic acid - Z zeatin - ZR ribosylzeatin  相似文献   

12.
Serial longitudinal and transverse sections were prepared from roots of Cucumis sativus and Cucurbita maxima that had been exposed/sham-exposed to 60-Hz electric fields for 0-2 days. Field exposures were selected to produce a 10-20% or a 70-80% growth inhibition in whole roots of both species. Cortical cell length and diameter were measured using a microscope and eyepiece micrometer; measurements were conducted "blind." In both species, inhibition of cellular elongation was associated with exposure to electric fields (EF). Cellular radial expansion was apparently unaffected by exposure to electric fields. The diameters of radially unexpanded or fully expanded C. sativus cortical cells were about 25-30% smaller than those of comparable cells in C. maxima roots. Previous studies of the relationship between rates of root growth and applied EF strength showed that the response thresholds of C. sativus and C. maxima differed by a similar relative amount. These results are consistent with the postulate that EF-induced effects in roots are elicited by induced transmembrane potentials.  相似文献   

13.
The effect of gibberellic acid (GA) on subhook growth in derooted cuttings of pea ( Pisum sativum L. cv. Alaska) grown in the dark was studied in relation to the distribution of sugar-related compounds in the epicotyl and cotyledons. GA stimulated subhook growth of cuttings with or without cotyledons. In cuttings with cotyledons, the net inflow of sugar-related compounds (soluble sugars, starch, cell wall polysaccharides and sugars consumed by respiration) to the epicoiyl balanced with the net outflow from the cotyledons. GA stimulated the net inflow of sugar-related compounds to the epicotyl and the net outflow from cotyledons. Among these compounds, GA substantially increased the amount of soluble sugars, starch and cell wall polysaccharides in the subhook. In cuttings without cotyledons, on the other hand, the net inflow of sugar-related compounds to the subhook almost balanced with the net outflow from the epicotyl below the subhook. GA stimulated the net inflow of sugar-related compounds to the subhook and the net outflow from the epicotyl below the subhook. Among these compounds, GA substantially increased the amount of soluble sugars and cell wall polysaccharides in the subhook. These results suggest that GA stimulates an increase in the net inflow of sugar-related compounds to the subhook, thereby preventing an increase in osmotic potential and stimulating cell wall polysaccharide synthesis, when pea subhook growth is stimulated.  相似文献   

14.
The cellular basis of internode elongation was studied in intact deep-water rice plants (Oryza sativa L. cv. Habiganj Aman II) and in isolated stem sections. In intact plants, growth was stimulated by submergence in water and by ethylene treatment. In isolated sections, growth was enhanced by submergence, by ethylene, and by exposure of the tissue to an atmosphere of 3% O2, 91% N2 and 6% CO2 or 3% O2, 91% N2, 6% CO2 and 1 l l-1 C2H4 (by vol.). Under all these conditions, growth was localized in the intercalary meristem at the bases of the internodes. Autoradiography of [3H]thymidine-labeled tissue showed activation of cell division and longitudinal expansion of the intercalary meristem. Increased production of new cells and their subsequent elongation thus form the basis for the growth response to submergence and ethylene treatment in deep-water rice plants.  相似文献   

15.
Fruit sink strength or its ability to attract assimilates depends bothon sink activity and size. This study investigated one main component of sinksize, that is the number of fruit cells during tomato plant development. Plantswere grown in a controlled climate chamber under a limiting (LS, six fruits pertruss) and non-limiting (NLS, two fruits per truss and CO2enrichment) supply of carbon assimilates. Under NLS conditions, fruit cellnumber was homogeneous among successive trusses, and fruits contained onaverage1.2×106 more cells than under LS conditions,though differences were not significant on the first truss which underwent thelowest competition. Under LS conditions, an ontogenetic increase in cell numberwas observed in proximal fruits of the upper trusses attributed to theenlargement of the apical meristem during plant development. The decrease ofcell number from proximal to distal fruits within a truss, that was expectedfrom the literature, was generally observed in the LS experiment, with anaverage significant difference of about1.6×106cells between the first and fifth fruits. Nevertheless, whereas the gradient incell number from proximal to distal fruits was steep in the upper trusses, itwas not significant on the lower trusses indicating that this gradient largelydepended on the level of competition during floral development. Thus, under lowassimilate supply, cell division is a main limiting factor for fruit growth,although cell enlargement during further fruit development is also affected,butwas not measured in this work.  相似文献   

16.
BACKGROUND AND AIMS: Growth and development of plant organs, including leaves, depend on cell division and expansion. Leaf size is increased by greater cell ploidy, but the mechanism of this effect is poorly understood. Therefore, in this study, the role of cell division and expansion in the increase of leaf size caused by polyploidy was examined by comparing various cell parameters of the mesophyll layer of developing leaves of diploid and autotetraploid cultivars of two grass species, Lolium perenne and L. multiflorum. METHODS: Three cultivars of each ploidy level of both species were grown under pot conditions in a controlled growth chamber, and leaf elongation rate and the cell length profile at the leaf base were measured on six plants in each cultivar. Cell parameters related to division and elongation activities were calculated by a kinematic method. KEY RESULTS: Tetraploid cultivars had faster leaf elongation rates than did diploid cultivars in both species, resulting in longer leaves, mainly due to their longer mature cells. Epidermal and mesophyll cells differed 20-fold in length, but were both greater in the tetraploid cultivars of both species. The increase in cell length of the tetraploid cultivars was caused by a faster cell elongation rate, not by a longer period of cell elongation. There were no significant differences between cell division parameters, such as cell production rate and cell cycle time, in the diploid and tetraploid cultivars. CONCLUSION: The results demonstrated clearly that polyploidy increases leaf size mainly by increasing the cell elongation rate, but not the duration of the period of elongation, and thus increases final cell size.  相似文献   

17.
The triazole growth retardant BAS 111‥W delayed senescence in cotyledons of pumpkin ( Cucurbita maxima L. cv. Gelbe genetzte Riesenmelone) and stimulated chlorophyll synthesis in greening cotyledons of oilseed rape ( Brassica napus L. cv. Petranova) seedlings. In both cases, changes of phytohormone-like substances in the cotyledons were analyzed on a fresh weight basis by immunoassay.
After soil treatment with increasing retardant concentrations, a close correlation was observed in senescing cotyledons of pumpkin between a reduced loss in total chlorophyll and increasing levels of dihydrozeatin riboside (DZR) and trans -zeatin riboside (ZR)-type cytokinins. In contrast, the levels of isopentenyladenosine (IPA)-type cytokinins, 3-indoleacetic acid (IAA) and gibberellin (GA) did not change significantly. The levels of abscisic acid (ABA) were slightly elevated at low retardant concentrations but dropped considerably below those of controls at higher doses. Consequently, the molar ratio of total cytokinin to ABA content changed from approximately 1:40 in controls (50% of initial chlorophyll) to 1:3 in cotyledons treated with 3 mg BAS 111‥W plant−1 (85% of initial chlorophyll). These changes, together with the known reduction of ethylene production by plants treated with nitrogen-heterocyclic retardants, can explain the delayed senescence in pumpkin cotyledons. Likewise, when etiolated, BAS 111‥W-treated seedlings of oilseed rape were exposed to light, the stimulation of chlorophyll synthesis in the cotyledons was accompanied by an accumulation of DZR- and, particularly, ZR-type cytokinins and IAA. In contrast, GA and ABA contents decreased slightly. We conclude that the influence of BAS 111‥W on cytokinin levels might be involved in the stimulation of greening.  相似文献   

18.
Post-translational hydroxylation of peptide-bound proline residues, catalyzed by peptidyl-prolyl-4 hydroxylase (EC 1.14.11.2) using ascorbate as co-substrate, is a key event in the maturation of a number of cell wall-associated hydroxyproline-rich glycoproteins (HRGPs), including extensins and arabinogalactan-proteins, which are involved in the processes of wall stiffening, signalling and cell proliferation. Allium cepa L. roots treated with 3,4-DL-dehydroproline (DP), a specific inhibitor of peptidyl-prolyl hydroxylase, showed a 56% decrease in the hydroxyproline content of HRGP. Administration of DP strongly affected the organization of specialized zones of root development, with a marked reduction of the post-mitotic isodiametric growth zone, early extension of cells leaving the meristematic zone and a huge increase in cell size. Electron-microscopy analysis showed dramatic alterations both to the organization of newly formed cell walls and to the adhesion of the plasma membranes to the cell walls. Moreover, DP administration inhibited cell cycle progression. Root tips grown in the presence of DP also showed an increase both in ascorbate content (+53%) and ascorbate-specific peroxidase activity in the cytosol (+72%), and a decrease in extracellular “secretory” peroxidase activity (−73%). The possible interaction between HRGPs and the ascorbate system in the regulation of both cell division and extension is discussed. Received: 14 October 1998 / Accepted: 31 May 1999  相似文献   

19.
Lupin seeds treated with 1-amino-cyclopropane-1-carboxylic acid (ACC) or2-chloroethylphosphonic acid (CEPA) produced hypocotyls showing a typicalethylene growth response (reduced elongation and increased thickness), whichcould be efficiently counteracted by the presence of silver thiosulfate (STS).The fact that ACC and CEPA stimulated the ethylene produced in different zonesalong the hypocotyls suggests that these compounds, which are stored in theseeds during treatment, were transported to and along the hypocotyl. The same istrue in hypocotyls from STS-treated seeds, which indicates that stress ethyleneis induced by metal toxicity. CEPA was more effective than ACC in both producingethylene and influencing growth due to the high capacity of the hypocotyl toconjugate ACC. At the same time that CEPA inhibited hypocotyl elongation, thehypocotyl diameter increased and ethylene production exceeded the maximum valueof the control. The subsequent recovery of hypocotyl elongation coincided with adecrease in ethylene production and involved cell elongation. The final celllength was similar (in ACC-) or higher (in CEPA-treated plants) than in thecontrol, although the hypocotyls were shorter in both cases, while the number ofcells per column was reduced to half that observed in the control. Thisinhibition of cell division caused by ethylene was selective since the number ofcell layers did not change. The variations in cell diameter in the epidermisand, especially, in the cortex and pith were correlated with the variations inhypocotyl diameter produced by ACC, CEPA and STS. The results show that theethylene-induced hypocotyl thickening was irreversible and mainly due to anincrease in cell diameter, while the inhibition of hypocotyl elongation wasreversible and involved irreversible inhibition of cell division and,paradoxically, stimulation of cell elongation to produce cells longer than thoseof the control.  相似文献   

20.
Summary The cell-type composition of the initial cell population from protease-dispersed neonatal rat heart tissue has been evaluated using time lapse photography and identification of cell type-specific functions. The effects of two commonly employed plating densities on growth and cell division of the two major cell types were examined. Total protein synthesis rates were not affected by plating density but did change with age in culture. Maximum protein synthesis rates were observed during the period of maximum cell division and cell growth (increase in total cell protein), which was from 24 h in culture to the 4th d in culture. After 6 d in culture, synthesis rates for total proteins remained constant for at least 2 wk. Sizing of cells by Coulter counter analysis indicated that essentially all the cells were increasing in size with age in culture. Measurements of cell numbers and rate of DNA synthesis indicated that the extent of cell division was dependent on plating density. Cells disaggregated from neonatal rat hearts consisted of approximately 75% muslce cells and 25% nonmuscle cells. This composition approximates the cell-type composition of the intact neonatal rat heart. In high density cultures there is little cell division and the relative proportionsof the cell types are preserved with time in culture. In low density cultures, proliferation of nonmuscle cells is a significant process and the composition of the cell population changes drastically during the first 2 to 3 d in culture. These results suggest that the low plating density used by many researchers may limit correlation of data derived from such cultures with the physiological state. It also indicates that plating densities should be given in published accounts for comparisons to be made with results from other laboratories. This work was supported in part by U.S. Public Health Service Grant HL10018 and The Pennsylvania State University Agricultural Experiment Station and was authorized for publication as Paper 5490 in the journal series of the Pennsylvania Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号