首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of neurotoxins based on their function and source   总被引:1,自引:0,他引:1  
Saha S  Raghava GP 《In silico biology》2007,7(4-5):369-387
We have developed a method NTXpred for predicting neurotoxins and classifying them based on their function and origin. The dataset used in this study consists of 582 non-redundant, experimentally annotated neurotoxins obtained from Swiss-Prot. A number of modules have been developed for predicting neurotoxins using residue composition based on feed-forwarded neural network (FNN), recurrent neural network (RNN), support vector machine (SVM) and achieved maximum accuracy of 84.19%, 92.75%, 97.72% respectively. In addition, SVM modules have been developed for classifying neurotoxins based on their source (e.g., eubacteria, cnidarians, molluscs, arthropods have been and chordate) using amino acid composition and dipeptide composition and achieved maximum overall accuracy of 78.94% and 88.07% respectively. The overall accuracy increased to 92.10%, when the evolutionary information obtained from PSI-BLAST was combined with SVM module of source classification. We have also developed SVM modules for classifying neurotoxins based on functions using amino acid, dipeptide composition and achieved overall accuracy of 83.11%, 91.10% respectively. The overall accuracy of function classification improved to 95.11%, when PSI-BLAST output was combined with SVM module. All the modules developed in this study were evaluated using five-fold cross-validation technique. The NTXpred is available at www.imtech.res.in/raghava/ntxpred/ and mirror site at http://bioinformatics.uams.edu/mirror/ntxpred.  相似文献   

2.
Most of the prediction methods for secretory proteins require the presence of a correct N-terminal end of the preprotein for correct classification. As large scale genome sequencing projects sometimes assign the 5'-end of genes incorrectly, many proteins are encoded without the correct N-terminus leading to incorrect prediction. In this study, a systematic attempt has been made to predict secretory proteins irrespective of presence or absence of N-terminal signal peptides (also known as classical and non-classical secreted proteins respectively), using machine-learning techniques; artificial neural network (ANN) and support vector machine (SVM). We trained and tested our methods on a dataset of 3321 secretory and 3654 non-secretory mammalian proteins using five-fold cross-validation technique. First, ANN-based modules have been developed for predicting secretory proteins using 33 physico-chemical properties, amino acid composition and dipeptide composition and achieved accuracies of 73.1%, 76.1% and 77.1%, respectively. Similarly, SVM-based modules using 33 physico-chemical properties, amino acid, and dipeptide composition have been able to achieve accuracies of 77.4%, 79.4% and 79.9%, respectively. In addition, BLAST and PSI-BLAST modules designed for predicting secretory proteins based on similarity search achieved 23.4% and 26.9% accuracy, respectively. Finally, we developed a hybrid-approach by integrating amino acid and dipeptide composition based SVM modules and PSI-BLAST module that increased the accuracy to 83.2%, which is significantly better than individual modules. We also achieved high sensitivity of 60.4% with low value of 5% false positive predictions using hybrid module. A web server SRTpred has been developed based on above study for predicting classical and non-classical secreted proteins from whole sequence of mammalian proteins, which is available from http://www.imtech.res.in/raghava/srtpred/.  相似文献   

3.
Here we report a systematic approach for predicting subcellular localization (cytoplasm, mitochondrial, nuclear, and plasma membrane) of human proteins. First, support vector machine (SVM)-based modules for predicting subcellular localization using traditional amino acid and dipeptide (i + 1) composition achieved overall accuracy of 76.6 and 77.8%, respectively. PSI-BLAST, when carried out using a similarity-based search against a nonredundant data base of experimentally annotated proteins, yielded 73.3% accuracy. To gain further insight, a hybrid module (hybrid1) was developed based on amino acid composition, dipeptide composition, and similarity information and attained better accuracy of 84.9%. In addition, SVM modules based on a different higher order dipeptide i.e. i + 2, i + 3, and i + 4 were also constructed for the prediction of subcellular localization of human proteins, and overall accuracy of 79.7, 77.5, and 77.1% was accomplished, respectively. Furthermore, another SVM module hybrid2 was developed using traditional dipeptide (i + 1) and higher order dipeptide (i + 2, i + 3, and i + 4) compositions, which gave an overall accuracy of 81.3%. We also developed SVM module hybrid3 based on amino acid composition, traditional and higher order dipeptide compositions, and PSI-BLAST output and achieved an overall accuracy of 84.4%. A Web server HSLPred (www.imtech.res.in/raghava/hslpred/ or bioinformatics.uams.edu/raghava/hslpred/) has been designed to predict subcellular localization of human proteins using the above approaches.  相似文献   

4.
The attainment of complete map‐based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome‐scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)‐based modules have been developed using traditional amino acid‐, dipeptide‐ (i+1) and four parts‐amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search‐based module has been developed using position‐specific iterated‐basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position‐specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher‐order dipeptide composition, N‐ and C‐terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf‐PSORT, PA‐SUB, Plant‐Ploc and ESLpred. To assist the plant research community, an online web tool ‘RSLpred’ has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred.  相似文献   

5.
This study describes a method for predicting and classifying oxygen-binding proteins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding proteins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Secondly, an SVM module was developed based on amino acid composition, classifying the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemocyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins (available from http://www.imtech.res.in/raghava/oxypred/).  相似文献   

6.
This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from http://www.imtech.res.in/raghava/oxypred/).  相似文献   

7.
This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from http://www.imtech.res.in/raghava/oxypred/).  相似文献   

8.
Saha S  Raghava GP 《In silico biology》2007,7(4-5):405-412
This paper describes a method developed for predicting bacterial toxins from their amino acid sequences. All the modules, developed in this study, were trained and tested on a non-redundant dataset of 150 bacterial toxins that included 77 exotoxins and 73 endotoxins. Firstly, support vector machines (SVM) based modules were developed for predicting the bacterial toxins using amino acids and dipeptides composition and achieved an accuracy of 96.07% and 92.50%, respectively. Secondly, SVM based modules were developed for discriminating entotoxins and exotoxins, using amino acids and dipeptides composition and achieved an accuracy of 95.71% and 92.86%, respectively. In addition, modules have been developed for classifying the exotoxins (e.g. activate adenylate cyclase, activate guanylate cyclase, neurotoxins) using hidden Markov models (HMM), PSI-BLAST and a combination of the two and achieved overall accuracy of 95.75%, 97.87% and 100%, respectively. Based on the above study, a web server called 'BTXpred' has been developed, which is available at http://www.imtech.res.in/raghava/btxpred/. Supplementary information is available at http://www.imtech.res.in/raghava/btxpred/supplementary.html.  相似文献   

9.
Panwar B  Raghava GP 《Amino acids》2012,42(5):1703-1713
Since endo-symbiotic events occur, all genes of mitochondrial aminoacyl tRNA synthetase (AARS) were lost or transferred from ancestral mitochondrial genome into the nucleus. The canonical pattern is that both cytosolic and mitochondrial AARSs coexist in the nuclear genome. In the present scenario all mitochondrial AARSs are nucleus-encoded, synthesized on cytosolic ribosomes and post-translationally imported from the cytosol into the mitochondria in eukaryotic cell. The site-based discrimination between similar types of enzymes is very challenging because they have almost same physico-chemical properties. It is very important to predict the sub-cellular location of AARSs, to understand the mitochondrial protein synthesis. We have analyzed and optimized the distinguishable patterns between cytosolic and mitochondrial AARSs. Firstly, support vector machines (SVM)-based modules have been developed using amino acid and dipeptide compositions and achieved Mathews correlation coefficient (MCC) of 0.82 and 0.73, respectively. Secondly, we have developed SVM modules using position-specific scoring matrix and achieved the maximum MCC of 0.78. Thirdly, we developed SVM modules using N-terminal, intermediate residues, C-terminal and split amino acid composition (SAAC) and achieved MCC of 0.82, 0.70, 0.39 and 0.86, respectively. Finally, a SVM module was developed using selected attributes of split amino acid composition (SA-SAAC) approach and achieved MCC of 0.92 with an accuracy of 96.00%. All modules were trained and tested on a non-redundant data set and evaluated using fivefold cross-validation technique. On the independent data sets, SA-SAAC based prediction model achieved MCC of 0.95 with an accuracy of 97.77%. The web-server 'MARSpred' based on above study is available at http://www.imtech.res.in/raghava/marspred/.  相似文献   

10.
Guo J  Lin Y  Liu X 《Proteomics》2006,6(19):5099-5105
This paper proposes a new integrative system (GNBSL--Gram-negative bacteria subcellular localization) for subcellular localization specifized on the Gram-negative bacteria proteins. First, the system generates a position-specific frequency matrix (PSFM) and a position-specific scoring matrix (PSSM) for each protein sequence by searching the Swiss-Prot database. Then different features are extracted by four modules from the PSFM and the PSSM. The features include whole-sequence amino acid composition, N- and C-terminus amino acid composition, dipeptide composition, and segment composition. Four probabilistic neural network (PNN) classifiers are used to classify these modules. To further improve the performance, two modules trained by support vector machine (SVM) are added in this system. One module extracts the residue-couple distribution from the amino acid sequence and the other module applies a pairwise profile alignment kernel to measure the local similarity between every two sequences. Finally, an additional SVM is used to fuse the outputs from the six modules. Test on a benchmark dataset shows that the overall success rate of GNBSL is higher than those of PSORT-B, CELLO, and PSLpred. A web server GNBSL can be visited from http://166.111.24.5/webtools/GNBSL/index.htm.  相似文献   

11.
Glutathione S-transferase (GST) proteins play vital role in living organism that includes detoxification of exogenous and endogenous chemicals, survivability during stress condition. This paper describes a method developed for predicting GST proteins. We have used a dataset of 107 GST and 107 non-GST proteins for training and the performance of the method was evaluated with five-fold cross-validation technique. First a SVM based method has been developed using amino acid and dipeptide composition and achieved the maximum accuracy of 91.59% and 95.79% respectively. In addition we developed a SVM based method using tripeptide composition and achieved maximum accuracy 97.66% which is better than accuracy achieved by HMM based searching (96.26%). Based on above study a web-server GSTPred has been developed (http://www.imtech.res.in/raghava/gstpred/).  相似文献   

12.

Background

Mannose binding proteins (MBPs) play a vital role in several biological functions such as defense mechanisms. These proteins bind to mannose on the surface of a wide range of pathogens and help in eliminating these pathogens from our body. Thus, it is important to identify mannose interacting residues (MIRs) in order to understand mechanism of recognition of pathogens by MBPs.

Results

This paper describes modules developed for predicting MIRs in a protein. Support vector machine (SVM) based models have been developed on 120 mannose binding protein chains, where no two chains have more than 25% sequence similarity. SVM models were developed on two types of datasets: 1) main dataset consists of 1029 mannose interacting and 1029 non-interacting residues, 2) realistic dataset consists of 1029 mannose interacting and 10320 non-interacting residues. In this study, firstly, we developed standard modules using binary and PSSM profile of patterns and got maximum MCC around 0.32. Secondly, we developed SVM modules using composition profile of patterns and achieved maximum MCC around 0.74 with accuracy 86.64% on main dataset. Thirdly, we developed a model on a realistic dataset and achieved maximum MCC of 0.62 with accuracy 93.08%. Based on this study, a standalone program and web server have been developed for predicting mannose interacting residues in proteins (http://www.imtech.res.in/raghava/premier/).

Conclusions

Compositional analysis of mannose interacting and non-interacting residues shows that certain types of residues are preferred in mannose interaction. It was also observed that residues around mannose interacting residues have a preference for certain types of residues. Composition of patterns/peptide/segment has been used for predicting MIRs and achieved reasonable high accuracy. It is possible that this novel strategy may be effective to predict other types of interacting residues. This study will be useful in annotating the function of protein as well as in understanding the role of mannose in the immune system.  相似文献   

13.
Sethi D  Garg A  Raghava GP 《Amino acids》2008,35(3):599-605
The association of structurally disordered proteins with a number of diseases has engendered enormous interest and therefore demands a prediction method that would facilitate their expeditious study at molecular level. The present study describes the development of a computational method for predicting disordered proteins using sequence and profile compositions as input features for the training of SVM models. First, we developed the amino acid and dipeptide compositions based SVM modules which yielded sensitivities of 75.6 and 73.2% along with Matthew’s Correlation Coefficient (MCC) values of 0.75 and 0.60, respectively. In addition, the use of predicted secondary structure content (coil, sheet and helices) in the form of composition values attained a sensitivity of 76.8% and MCC value of 0.77. Finally, the training of SVM models using evolutionary information hidden in the multiple sequence alignment profile improved the prediction performance by achieving a sensitivity value of 78% and MCC of 0.78. Furthermore, when evaluated on an independent dataset of partially disordered proteins, the same SVM module provided a correct prediction rate of 86.6%. Based on the above study, a web server (“DPROT”) was developed for the prediction of disordered proteins, which is available at .  相似文献   

14.
15.
This study describes methods for predicting and classifying voltage-gated ion channels. Firstly, a standard support vector machine (SVM) method was developed for predicting ion channels by using amino acid composition and dipeptide composition, with an accuracy of 82.89% and 85.56%, respectively. The accuracy of this SVM method was improved from 85.56% to 89.11% when combined with PSIBLAST similarity search. Then we developed an SVM method for classifying ion channels (potassium, sodium, calcium, and chloride) by using dipeptide composition and achieved an overall accuracy of 96.89%. We further achieved a classification accuracy of 97.78% by using a hybrid method that combines dipeptidebased SVM and hidden Markov model methods. A web server VGIchan has been developed for predicting and classifying voltage-gated ion channels using the above approaches. VGIchan is freely available at www.imtech.res.in/raghava/vgichan/.  相似文献   

16.
Prediction of protein (domain) structural classes based on amino-acid index.   总被引:10,自引:0,他引:10  
A protein (domain) is usually classified into one of the following four structural classes: all-alpha, all-beta, alpha/beta and alpha + beta. In this paper, a new formulation is proposed to predict the structural class of a protein (domain) from its primary sequence. Instead of the amino-acid composition used widely in the previous structural class prediction work, the auto-correlation functions based on the profile of amino-acid index along the primary sequence of the query protein (domain) are used for the structural class prediction. Consequently, the overall predictive accuracy is remarkably improved. For the same training database consisting of 359 proteins (domains) and the same component-coupled algorithm [Chou, K.C. & Maggiora, G.M. (1998) Protein Eng. 11, 523-538], the overall predictive accuracy of the new method for the jackknife test is 5-7% higher than the accuracy based only on the amino-acid composition. The overall predictive accuracy finally obtained for the jackknife test is as high as 90.5%, implying that a significant improvement has been achieved by making full use of the information contained in the primary sequence for the class prediction. This improvement depends on the size of the training database, the auto-correlation functions selected and the amino-acid index used. We have found that the amino-acid index proposed by Oobatake and Ooi, i.e. the average nonbonded energy per residue, leads to the optimal predictive result in the case for the database sets studied in this paper. This study may be considered as an alternative step towards making the structural class prediction more practical.  相似文献   

17.
Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset.  相似文献   

18.
G Schneider 《Gene》1999,237(1):113-121
Artificial neural networks were trained on the prediction of the subcellular location of bacterial proteins. A cross-validated average prediction accuracy of 93% was reached for distinction between cytoplasmic and non-cytoplasmic proteins, based on the analysis of protein amino-acid composition. Principal component analysis and self-organizing maps were used to create graphical representations of amino-acid sequence space. A clear separation of cytoplasmic, periplasmic, and extracellular proteins was observed. The neural network system was applied to predicting potentially secreted proteins in 15 complete genomes. For mesophile bacteria the predicted fractions of non-cytoplasmic proteins agree with previously published estimates, ranging between 15% and 30%. Characteristics of thermophile genomes might lead to an under-estimation of the fraction of secreted proteins by presently available prediction systems. A self-organizing map was constructed from all 15 bacterial genomes. This technique can reveal additional sequence features independent from exhaustive pair-wise sequence alignment. The Treponema pallidum and Mycobacterium tuberculosis data formed separate clusters indicating unusual characteristics of these genomes.  相似文献   

19.
This study presents an allergenic protein prediction system that appears to be capable of producing high sensitivity and specificity. The proposed system is based on support vector machine (SVM) using evolutionary information in the form of an amino acid position specific scoring matrix (PSSM). The performance of this system is assessed by a 10-fold cross-validation experiment using a dataset consisting of 693 allergens and 1041 non-allergens obtained from Swiss-Prot and Structural Database of Allergenic Proteins (SDAP). The PSSM method produced an accuracy of 90.1% in comparison to the methods based on SVM using amino acid, dipeptide composition, pseudo (5-tier) amino acid composition that achieved an accuracy of 86.3, 86.5 and 82.1% respectively. The results show that evolutionary information can be useful to build more effective and efficient allergen prediction systems.  相似文献   

20.
Prediction of RNA binding sites in a protein using SVM and PSSM profile   总被引:1,自引:0,他引:1  
Kumar M  Gromiha MM  Raghava GP 《Proteins》2008,71(1):189-194
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号