首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation was made into the role of the ptsO gene in carbon source inhibition of the Pu promoter belonging to the Pseudomonas putida upper TOL (toluene degradation) operon. ptsO is coexpressed with ptsN, the loss of which is known to render Pu unresponsive to glucose. Both ptsN and ptsO, coding for the phosphoenolpyruvate:sugar phosphotransferase system (PTS) family proteins IIA(Ntr) and NPr, respectively, have been mapped adjacent to the rpoN gene of P. putida. The roles of these two genes in the responses of Pu to glucose were monitored by lacZ reporter technology with a P. putida strain engineered with all regulatory elements in monocopy gene dosage. In cells lacking ptsO, Pu activity seemed to be inhibited even in the absence of glucose. A functional relationship with ptsN was revealed by the phenotype of a double ptsN ptsO mutant that was equivalent to the phenotype of a mutant with a single ptsN disruption. Moreover, phosphorylation of the product of ptsO seemed to be required for C inhibition of Pu, since an H15A change in the NPr sequence that prevents phosphorylation of this conserved amino acid residue did not restore the wild-type phenotype. A genomic search for proteins able to phosphorylate ptsO revealed the presence of two open reading frames, designated ptsP and mtp, with the potential to encode PTS type I enzymes in P. putida. However, neither an insertion in ptsP nor an insertion in mtp resulted in a detectable change in inhibition of Pu by glucose. These results indicate that some PTS proteins have regulatory functions in P. putida that are independent of their recognized role in sugar transport in other bacteria.  相似文献   

2.
3.
While the proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system (carbohydrate PTS) have been shown to regulate numerous targets, little such information is available for the nitrogen-metabolic phosphotransferase system (nitrogen-metabolic PTS). To elucidate the physiological role of the nitrogen-metabolic PTS, we carried out phenotype microarray (PM) analysis with Escherichia coli K-12 strain MG1655 deleted for the ptsP gene encoding the first enzyme of the nitrogen-metabolic PTS. Together with the PM data, growth studies revealed that a ptsN (encoding enzyme IIA(Ntr)) mutant became extremely sensitive to leucine-containing peptides (LCPs), while both ptsP (encoding enzyme I(Ntr)) and ptsO (encoding NPr) mutants were more resistant than wild type. The toxicity of LCPs was found to be due to leucine and the dephospho-form of enzyme IIA(Ntr) was found to be necessary to neutralize leucine toxicity. Further studies showed that the dephospho-form of enzyme IIA(Ntr) is required for derepression of the ilvBN operon encoding acetohydroxy acid synthase I catalysing the first step common to the biosynthesis of the branched-chain amino acids.  相似文献   

4.
5.
6.
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.  相似文献   

7.
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.  相似文献   

8.
Microbes survive in a variety of nutrient environments by modulating their intracellular metabolism. Balanced growth requires coordinated uptake of carbon and nitrogen, the primary substrates for biomass production. Yet the mechanisms that balance carbon and nitrogen uptake are poorly understood. We find in Escherichia coli that a sudden increase in nitrogen availability results in an almost immediate increase in glucose uptake. The concentrations of glycolytic intermediates and known regulators, however, remain homeostatic. Instead, we find that α-ketoglutarate, which accumulates in nitrogen limitation, directly blocks glucose uptake by inhibiting enzyme I, the first step of the sugar-phosphoenolpyruvate phosphotransferase system (PTS). This inhibition enables rapid modulation of glycolytic flux without marked changes in the concentrations of glycolytic intermediates by simultaneously altering import of glucose and consumption of the terminal glycolytic intermediate phosphoenolpyruvate. Quantitative modeling shows that this previously unidentified regulatory connection is, in principle, sufficient to coordinate carbon and nitrogen utilization.  相似文献   

9.
Six ilvG (IlvG+) mutations of Escherichia coli K-12 were transferred to recombinant plasmids, and the DNA sequence of each mutation was determined. This analysis confirmed that expression of the ilvG gene product (acetohydroxy acid synthase II) requires the deletion of a single base pair or the addition of two base pairs within ilvG to displace a frameshift site present in wild-type E. coli K-12. This system should be useful in the analysis of potential frameshift mutagens.  相似文献   

10.
The effect of the ilvG671, ilvG468, and ilvG603 mutations (phenotype, IlvG+ Valr; formerly ilvO) upon proteins synthesized was determined by infection of irradiated Escherichia coli K-12 cells, using specifically constructed derivatives of lambda dilv phage. These ilvG alleles are similar to the previously studied ilvG2096(Valr) allele in that they activate the latent ilvG gene which is present in the wild-type strain, leading to the synthesis of a 62,000-dalton protein. In addition, all of these ilvG (Valr) alleles increase the synthesis of a 15,000-dalton protein. To localize the gene coding for the 15,000-dalton protein, the proteins produced in maxicells containing plasmids with specific deletions of ilv and rrnX DNA segments were analyzed. The gene coding for the 15,000-dalton protein was located within a region about 1,000 base pairs long between ilv and trpT. The function of the 15,000-dalton protein is not known.  相似文献   

11.
A temperature-sensitive Escherichia coli mutant defective for the ability to utilize L-asparagine as a sole nitrogen source was isolated after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutation (asu) produces two distinct phenotypic effects. Mutant strains grow poorly at high temperature on minimal plates containing asparagine as the sole nitrogen source; this effect is greatly exacerbated by the presence of methionine. Mutant strains utilize L-asparagine as a nitrogen source three to four times more efficiently at permissive temperatures than the wild-type strains. The mutation maps at 32.4 min on the E. coli chromosome, within the E. coli cotransduction gap. Mutant strains produce normal amounts of thermo-stable L-asparaginase I activity. The mutation therefore affects a component of the asparagine utilization system other than the catabolism of asparagine within the cell; it probably affects asparagine uptake.  相似文献   

12.
利用Red重组系统对野生大肠杆菌Escherichia coli磷酸烯醇式丙酮酸-糖磷酸转移酶系统(Phosphoenolpyruvate:carbohydrate phosphotransferase system,PTS)进行修饰改造,敲除PTS系统中关键组分EⅡCBGlc的编码基因(ptsG),磷酸组氨酸搬运蛋白HPr的编码基因(ptsI),同时敲入来源于运动发酵单胞菌Zymomonas mobilis的葡萄糖易化体(Glucose facilitator)编码基因(glf),构建重组大肠杆菌,比较测定并系统评价了基因敲除和敲入对细胞的生长、葡萄糖代谢和乙酸积累的影响。敲除基因ptsG和ptsI造成大肠杆菌PTS系统部分功能缺失,细胞生长受到一定限制,敲入glf基因后,重组大肠杆菌能够利用Glf-Glk(葡萄糖易化体-葡萄糖激酶)途径,消耗ATP将葡萄糖进行磷酸化并转运进入细胞。通过该途径转运葡萄糖能够提高葡萄糖利用效率,降低副产物乙酸生成,同时能够使更多的碳代谢流进入后续相关合成途径,预期能够提高相关产物产量。  相似文献   

13.
Among the eukaryotes only plants and a number of fungi are able to synthesize biotin. Although initial events leading to the biosynthesis of biotin remain largely unknown, the final steps are known to occur in the mitochondria. Here we deleted the Aopex5 and Aopex7 genes encoding the receptors for peroxisomal targeting signals PTS1 and PTS2, respectively, in the filamentous fungus Aspergillus oryzae. In addition to exhibiting defects in the peroxisomal targeting of either PTS1 or PTS2 proteins, the deletion strains also displayed growth defects on minimal medium containing oleic acid as the sole carbon source. Unexpectedly, these peroxisomal transport-deficient strains also exhibited growth defects on minimal medium containing glucose as the sole carbon source that were remediated by the addition of biotin and its precursors, including 7-keto-8-aminopelargonic acid (KAPA). Genome database searches in fungi and plants revealed that BioF protein/KAPA synthase, one of the biotin biosynthetic enzymes, has a PTS1 sequence at the C terminus. Fungal ΔbioF strains expressing the fungal and plant BioF proteins lacking PTS1 still exhibited growth defects in the absence of biotin, indicating that peroxisomal targeting of KAPA synthase is crucial for the biotin biosynthesis. Furthermore, in the plant Arabidopsis thaliana, AtBioF localized to the peroxisomes through recognition of its PTS1 sequence, suggesting involvement of peroxisomes in biotin biosynthesis in plants. Taken together we demonstrate a novel role for peroxisomes in biotin biosynthesis and suggest the presence of as yet unidentified peroxisomal proteins that function in the earlier steps of biotin biosynthesis.  相似文献   

14.
A low-copy-number plasmid was prepared that contained the entire ilv gene cluster of Escherichia coli. The introduction of an ilvO mutation allowed the ilvG gene of the plasmid to be expressed and imparted valine resistance to strains carrying it. Insertion of Tn10 into the ilvG gene of the plasmid resulted in a strong polar effect on ilv genes E, D, and A. Replacement of a region of ilv deoxyribonucleic acid between two KpnI sites on the high-copy-number plasmid carrying the entire ilv gene cluster with a KpnI fragment carrying an ilv-lac fusion but not extending into the ilv-specific control region resulted in a plasmid expressing the lacZ gene under ilv control when the fusion had been inserted in its normal orientation but not when it had been inserted in the opposite orientation. These experiments indicate that ilv-specific control over ilvE, ilvD, and ilvA expression is dependent on these genes being continguous with deoxyribonucleic acid that lies upstream of ilvG. The results also add further support to the concept of an ilvGEDA operon in E. coli.  相似文献   

15.
The Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS) in prokaryotes mediates the uptake and phosphorylation of its numerous substrates through a phosphoryl transfer chain where a phosphoryl transfer protein, HPr, transfers its phosphoryl group to any of several sugar-specific Enzyme IIA proteins in preparation for sugar transport. A phosphoryl transfer protein of the PTS, NPr, homologous to HPr, functions to regulate nitrogen metabolism and shows virtually no enzymatic cross-reactivity with HPr. Here we describe the genetic engineering of a "chimeric" HPr/NPr protein, termed CPr14 because 14 amino acid residues of the interface were replaced. CPr14 shows decreased activity with most PTS permeases relative to HPr, but increases activity with the broad specificity mannose permease. The results lead to the proposal that HPr is not optimal for most PTS permeases but instead represents a compromise with suboptimal activity for most PTS permeases. The evolutionary implications are discussed.  相似文献   

16.
17.
In silico analyses of previously sequenced strains of Escherichia coli O157:H7, EDL933 and Sakai, localized the gene cluster for the utilization of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam). This gene cluster encodes the Aga phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and other catabolic enzymes responsible for transport and catabolism of Aga. As the complete coding sequences for enzyme IIA (EIIA)(Aga/Gam), EIIB(Aga), EIIC(Aga), and EIID(Aga) of the Aga PTS are present, E. coli O157:H7 strains normally are able to utilize Aga as a sole carbon source. The Gam PTS complex, in contrast, lacks EIIC(Gam), and consequently, E. coli O157:H7 strains cannot utilize Gam. Phenotypic analyses of 120 independent isolates of E. coli O157:H7 from our culture collection revealed that the overwhelming majority (118/120) displayed the expected Aga+ Gam- phenotype. Yet, when 194 individual isolates, derived from a 2006 spinach-associated E. coli O157:H7 outbreak, were analyzed, all (194/194) displayed an Aga- Gam- phenotype. Comparison of aga/gam sequences from two spinach isolates with those of EDL933 and Sakai revealed a single nucleotide change (G:C-->A:T) in the agaF gene in the spinach-associated isolates. The base substitution in agaF, which encodes EIIA(Aga/Gam) of the PTS, changes a conserved glycine residue to serine (Gly91Ser). Pyrosequencing of this region showed that all spinach-associated E. coli O157:H7 isolates harbored this same G:C-->A:T substitution. Notably, when agaF+ was cloned into an expression vector and transformed into six spinach isolates, all (6/6) were able to grow on Aga, thus demonstrating that the Gly91Ser substitution underlies the Aga- phenotype in these isolates.  相似文献   

18.
The ptsN gene of Pseudomonas putida encodes IIA(Ntr), a protein of the phosphoenol pyruvate:sugar phosphotransferase (PTS) system which is required for the C source inhibition of the sigma(54)-dependent promoter Pu of the TOL (toluate degradation) plasmid pWW0. Using two-dimensional gel electrophoresis, we have examined the effect of ptsN disruption on the general expression pattern of P. putida. To this end, cells were grown in the presence or absence of glucose, and a 1,117-spot subset of the P. putida proteome was used as a reference for comparisons. Among all gene products whose expression was lowered by this carbon source (247 spots [about 22%]), only 6 behaved as Pu (i.e., were depressed in the ptsN background). This evidenced only a minor role for IIA(Ntr) in the extensive inhibition of gene expression in P. putida caused by glucose. However, the same experiments revealed a large incidence of glucose-independent effects brought about by the ptsN mutation. As many as 108 spots (ca. 9% of the cell products analyzed) were influenced, positively or negatively, by the loss of IIA(Ntr). By matching this pattern with that of an rpoN::OmegaKm strain of P. putida, which lacks the sigma(54) protein, we judge that most proteins whose expression was affected by ptsN were unrelated to the alternative sigma factor. These data suggest a role of IIA(Ntr) as a general regulator, independent of the presence of repressive carbon sources and not limited to sigma(54)-dependent genes.  相似文献   

19.
IlvHI locus of Salmonella typhimurium.   总被引:8,自引:5,他引:3       下载免费PDF全文
In Escherichia coli K-12, the ilvHI locus codes for one of two acetohydroxy acid synthase isoenzymes. A region of the Salmonella typhimurium genome adjacent to the leucine operon was cloned on plasmid pBR322, yielding plasmids pCV47 and pCV49 (a shortened version of pCV47). This region contains DNA homologous to the E. coli ilvHI locus, as judged by hybridization experiments. Plasmid pCV47 did not confer isoleucine-valine prototrophy upon either E. coli or S. typhimurium strains lacking acetohydroxy acid synthase activity, suggesting that S. typhimurium lacks a functional ilvHI locus. However, isoleucine-valine prototrophs were readily isolated from such strains after mutagenesis with nitrosoguanidine. In one case we found that the Ilv+ phenotype resulted from an alteration in bacterial DNA on the plasmid (new plasmid designated pCV50). Furthermore, a new acetohydroxy acid synthase activity was observed in Ilv+ revertants; this enzyme was similar to E. coli acetohydroxy acid synthase III in its lack of activity at low pH. This new activity was correlated with the appearance in minicells of a new polypeptide having an approximate molecular weight of 61,000. Strains carrying either pCV49 or pCV50 produced a substantial amount of ilvHI-specific mRNA. These results, together with results from other laboratories, suggest that S. typhimurium has functional ilvB and ilvG genes and a cryptic ilvHI locus. E. coli K-12, on the other hand, has functional ilvB and ilvHI genes and a cryptic ilvG locus.  相似文献   

20.
Proton fluxes related to the acid–base balance of intact plants were investigated in detail. A multi-channel titration system was developed in order to regulate the pH in two different sets of nutrient solutions. This system also allowed computation of the dynamics of proton fluxes associated with nutrient uptake in situ. The pH-stat system presented here has proved to be very reliable and sensitive. By additions of acid or base to the nutrient solutions, the set pH could typically be maintained within 0·01 pH units. Experiments investigating net proton fluxes correlated with nitrogen uptake are described. The results show a rapid response of proton fluxes to changes in the form of nitrogen supplied, indicating that alterations in net proton fluxes are directly induced by the nature of the nitrogen source. The stoichiometry of proton fluxes connected to nitrogen uptake could be followed online, and the results are discussed in relation to the charge and acid–base balances of the whole plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号