首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycoplasma mobile has a unique mechanism that enables it to glide on solid surfaces faster than any other gliding mycoplasma. To elucidate the gliding mechanism, we developed a transformation system for M. mobile based on a transposon derived from Tn4001. Modification of the electroporation conditions, outgrowth time, and colony formation from the standard method for Mycoplasma species enabled successful transformation. A fluorescent-protein tagging technique was developed using the enhanced yellow fluorescent protein (EYFP) and applied to two proteins that have been suggested to be involved in the gliding mechanism: P42 (MMOB1050), which is transcribed as continuous mRNA with other proteins essential for gliding, and a homolog of the F1-ATPase α-subunit (MMOB1660). Analysis of the amino acid sequence of P42 by PSI-BLAST suggested that P42 evolved from a common ancestor with FtsZ, the bacterial tubulin homologue. The roles of P42 and the F1-ATPase subunit homolog are discussed as part of our proposed gliding mechanism.  相似文献   

2.
The effects of 1 and 2 receptor ligands on Ca2+/Mg2+-ATPase have been studied using synaptosomal plasma membranes isolated from rat brain cortex. Both phenylephrine and clonidine inhibited Ca2+/Mg2+-ATPase, in a concentration-dependent fashion. IC50 values for half-maximal inhibition for phenylephrine and clonidine were 29 M and 18 M, respectively. The inhibitory effect of phenylephrine was reversed by the alpha antagonist prazosin while yohimbine and rauwolscine reversed the inhibition of enzyme activity by clonidine. The two antagonist subtypes were effective only against the respective agonist subtypes, demonstrating distinct subtype preferences. Analysis of the kinetics of enzyme inhibition indicate both agonists to be noncompetitive. Some evidence suggests that yohimbine may exhibit mixed agonist/antagonist properties which depend on [Ca2+]. The present study provides biochemical evidence to support auto receptor adrenergic receptor regulation of neurotransmitter release.  相似文献   

3.
We expressed the γ-subspecies of protein kinase C (γ-PKC) fused with green fluorescent protein (GFP) in various cell lines and observed the movement of this fusion protein in living cells under a confocal laser scanning fluorescent microscope. γ-PKC–GFP fusion protein had enzymological properties very similar to that of native γ-PKC. The fluorescence of γ-PKC– GFP was observed throughout the cytoplasm in transiently transfected COS-7 cells. Stimulation by an active phorbol ester (12-O-tetradecanoylphorbol 13-acetate [TPA]) but not by an inactive phorbol ester (4α-phorbol 12, 13-didecanoate) induced a significant translocation of γ-PKC–GFP from cytoplasm to the plasma membrane. A23187, a Ca2+ ionophore, induced a more rapid translocation of γ-PKC–GFP than TPA. The A23187-induced translocation was abolished by elimination of extracellular and intracellular Ca2+. TPA- induced translocation of γ-PKC–GFP was unidirected, while Ca2+ ionophore–induced translocation was reversible; that is, γ-PKC–GFP translocated to the membrane returned to the cytosol and finally accumulated as patchy dots on the plasma membrane. To investigate the significance of C1 and C2 domains of γ-PKC in translocation, we expressed mutant γ-PKC–GFP fusion protein in which the two cysteine rich regions in the C1 region were disrupted (designated as BS 238) or the C2 region was deleted (BS 239). BS 238 mutant was translocated by Ca2+ ionophore but not by TPA. In contrast, BS 239 mutant was translocated by TPA but not by Ca2+ ionophore. To examine the translocation of γ-PKC–GFP under physiological conditions, we expressed it in NG-108 cells, N-methyl-d-aspartate (NMDA) receptor–transfected COS-7 cells, or CHO cells expressing metabotropic glutamate receptor 1 (CHO/mGluR1 cells). In NG-108 cells , K+ depolarization induced rapid translocation of γ-PKC–GFP. In NMDA receptor–transfected COS-7 cells, application of NMDA plus glycine also translocated γ-PKC–GFP. Furthermore, rapid translocation and sequential retranslocation of γ-PKC–GFP were observed in CHO/ mGluR1 cells on stimulation with the receptor. Neither cytochalasin D nor colchicine affected the translocation of γ-PKC–GFP, indicating that translocation of γ-PKC was independent of actin and microtubule. γ-PKC–GFP fusion protein is a useful tool for investigating the molecular mechanism of γ-PKC translocation and the role of γ-PKC in the central nervous system.Protein kinase C (PKC),1 a family of phospholipid-dependent serine/threonine kinases and of which there are at least 12 subspecies, plays an important role in various cellular signal transductions (Nishizuka, 1984, 1988, 1992). Regardless of ubiquitous expression of PKCs in various tissues, the central nervous system abundantly contains several unique PKCs. In particular, the γ-subspecies of PKC (γ-PKC) is present only in the central nervous system and is thought to be involved in many neuronal functions including the formation of neural plasticity and memory (Nishizuka, 1986; Abeliovich et al., 1993a ,b; Tanaka and Nishizuka, 1994).PKC isozymes are divided into three subfamilies based on differences in the regulatory domain: conventional PKC (cPKC), novel PKC (nPKC), and atypical PKC (aPKC). Conventional PKCs have two common regions in the regulatory domain, C1 and C2. The C1 region has two cysteine-rich loops (zinc finger–like motifs) that interact with diacylglycerol (DG) or phorbol esters (Nishizuka, 1988; Ono et al., 1989). The C2 region mediates calcium binding (Ono et al., 1989) and is only present in cPKCs (Ono et al., 1988b ), although a region related to C2 region was recently reported in nPKC, a calcium-independent PKC (Parker and Dekker, 1997). Full activation of cPKCs, including γ-PKC, requires DG and calcium. The C1 region is also present in nPKC, and one of the cysteine-rich loops is found in aPKCs.Conventional PKCs and nPKCs, whose regulatory domains contain C1, are known to be translocated from the cytosol to particulate fraction when activated by DG or phorbol esters (Kraft et al., 1982). Therefore, the translocation of PKCs is a good marker of whether these enzymes are activated. Although this phenomenon is well known, the mechanism and physiological significance of PKC translocation have not yet been clarified. By conventional enzymological or immunohistochemical methods, it is impossible to observe the translocation of PKC in real time, in the same cells, and in living states, except in the investigation using fluorescent probes that directly bind PKC (Chen and Poenie, 1993). In addition, these fluorescent compounds are suggested to inhibit the activity of PKC itself at high concentration.To resolve these problems and to directly observe the translocation of γ-PKC in living cells, we produced a fusion protein of γ-PKC and green fluorescent protein (GFP). The GFP, isolated from jellyfish Aequorea victoria, has fluorescence without additional substrates and cofactors (Cubitt et al., 1995). Recent studies have revealed that GFP is a good candidate as a molecular reporter protein to monitor the alternation of protein localization, gene expression, and protein trafficking in living cells (Cubitt et al., 1995). In this study, we visualized and analyzed the translocation of γ-PKC–GFP fusion protein with confocal laser scanning fluorescence microscopy, using various stimulations, such as phorbol esters, Ca2+ ionophore, K+ depolarization, and receptor-mediated stimulus.  相似文献   

4.
The effects of copper on the activity of erythrocyte (Ca2+ + Mg2+)-ATPase have been tested on membranes stripped of endogenous calmodulin or recombined with purified calmodulin. The interactions of copper with Ca2+, calmodulin and (Mg-ATP)2? were determined by kinetic studies. The most striking result is the potent competitive inhibition exerted by (Cu-ATP)2? against (Mg-ATP)2?Ki = 2.8 μM), while free copper gives no characteristic inhibition. Our results also demonstrate that copper does not compete with calcium either on the enzyme or on calmodulin. The fixation of calmodulin on the enzyme is not altered in the presence of copper as shown by the fact that the dissociation constant remains unaffected. It may be speculated that (Cu-ATP)2? is the active form of copper, which could plausibly be at the origin of some of the pathological features of erythrocytes observed in conditions associated with excess copper.  相似文献   

5.
Pancreatic islets of Langerhans regulate blood glucose homeostasis by the secretion of the hormone insulin. Like many neuroendocrine cells, the coupling between insulin-secreting β-cells in the islet is critical for the dynamics of hormone secretion. We have examined how this coupling architecture regulates the electrical dynamics that underlie insulin secretion by utilizing a microwell-based aggregation method to generate clusters of a β-cell line with defined sizes and dimensions. We measured the dynamics of free-calcium activity ([Ca2+]i) and insulin secretion and compared these measurements with a percolating network model. We observed that the coupling dimension was critical for regulating [Ca2+]i dynamics and insulin secretion. Three-dimensional coupling led to size-invariant suppression of [Ca2+]i at low glucose and robust synchronized [Ca2+]i oscillations at elevated glucose, whereas two-dimensional coupling showed poor suppression and less robust synchronization, with significant size-dependence. The dimension- and size-scaling of [Ca2+]i at high and low glucose could be accurately described with the percolating network model, using similar network connectivity. As such this could explain the fundamentally different behavior and size-scaling observed under each coupling dimension. This study highlights the dependence of proper β-cell function on the coupling architecture that will be important for developing therapeutic treatments for diabetes such as islet transplantation techniques. Furthermore, this will be vital to gain a better understanding of the general features by which cellular interactions regulate coupled multicellular systems.  相似文献   

6.
Since their invention, ion-selective microelectrodes have become an indispensable tool for investigations of intracellular ion regulation and transport. While highly selective sensors for all major intracellular monovalent ions have been available for decades, the development of sensors for divalent cations seems to have presented more difficulties. As ion-selective microelectrodes typically have time-constants in the range of 0.5 to several seconds they turned out to be inapt for the investigation of intracellular Ca2+. The development of sensors for Mg2+-selective electrodes has made its most striking progress only over the past few years. While the first Mg2+ sensor, ETH 1117, was barely able to detect physiological Mg2+ concentrations in the presence of other mono- and divalent cations, the newest sensors allow measurements in the micromolar range. When used in macroelectrodes, the most recent developments, ETH 5506 and ETH 5504, have even been reported to do so in the presence of millimolar Ca2+ concentrations. Although there is still room for improvement to make these sensors applicable in microelectrodes, some preliminary data look extremely promising and indicate that a new era for Mg2+-selective microelectrodes is about to start.  相似文献   

7.
Summary A technique suitable for mapping ± stopping density distributions in patients or phantoms is described. As a position sensitive detector a multiwire proportional chamber with a slit or a hole collimator in front was applied. Results using a water and a Rando phantom are presented for various momenta and momentum band widths of the ± beam. To our knowledge the two-dimensional visualization of a stopping density distribution was realized for the first time.  相似文献   

8.
Ca2+ and Mg2+ are important mediators and regulators of intracellular Ca2+ signaling in muscle. The effects of changes of cytosolic [Ca2+] or [Mg2+] on elementary Ca2+ release events were determined, as functions of concentration and time, in single fast-twitch permeabilized fibers of rat and frog. Ca2+ sparks were identified and their parameters measured in confocal images of fluo-4 fluorescence. Solutions with different [Ca2+] or [Mg2+] were rapidly exchanged while imaging. Faster and spatially homogeneous changes of [Ca2+] (reaching peaks >100 microM) were achieved by photolysing Ca NP-EGTA with laser flashes. In both species, incrementing cytosolic [Ca2+] caused a steady, nearly proportional increase in spark frequency, reversible upon [Ca2+] reduction. A greater change in spark frequency, usually transient, followed sudden increases in [Ca2+] after a lag of 100 ms or more. The nonlinearity, lag, and other features of this delayed effect suggest that it requires increase of [Ca2+] inside the SR. In the frog only, increases in cytosolic [Ca2+] often resulted, after a lag, in sparks that propagated transversally. An increase in [Mg2+] caused a fall of spark frequency, but with striking species differences. In the rat, but not the frog, sparks were observed at 4-40 mM [Mg2+]. Reducing [Mg2+] below 2 mM, which should enable the RyR channel's activation (CICR) site to bind Ca2+, caused progressive increase in spark frequency in the frog, but had no effect in the rat. Spark propagation and enhancement by sub-mM Mg2+ are hallmarks of CICR. Their absence in the rat suggests that CICR requires RyR3 para-junctional clusters, present only in the frog. The observed frequency of sparks corresponds to a channel open probability of 10(-7) in the frog or 10(-8) in the rat. Together with the failure of photorelease to induce activation directly, this indicates a basal inhibition of channels in situ. It is proposed that relief of this inhibition could be the mechanism by which increased SR load increases spark frequency.  相似文献   

9.
The distribution of mitochondria during early development of mouse embryos was visualized bymitochondria-specific vital fluorescent dye, rhodamine 123(Rh 123). Mitochondrial clusters wasmarkedly conceotrated to perinuclear area in blastomere of normal 2-ccll embryos. In blastomere ofuncompacted 8-cell embryos, mitochondria were randomly distributed throughout the cytoplasm, butthey were reorganizcd to the cytocortices beneath the apposed surfaces of blastomere duringcompaction. As demonstrated in our study, colchicine (10 μg/ml) produced marked effect onmitochondrial distribution in blastomcre of 2-cell and compacted 8-cell embryos: mitochondriabecame scattered throughout the cytoplasm ofblastomere. It is suggested that the spatial distributionof mitochondria in early mouse embryo are maintained by microtubule.  相似文献   

10.
11.
12.
The α1β1 integrin receptor binds to its main extracellular ligand, collagen, through an inserted domain in its α-subunit called the αI domain (αI). αI contains a metal binding site that allows collagen to coordinate to the domain through a divalent metal ion. Here we report the backbone assignments of the apo and Mg2+ bound state of the isolated human α1I and the chemical shift changes resulting from metal coordination.  相似文献   

13.
Chromomycin A3 (CHR) is an antitumor antibiotic that inhibits macromolecular biosynthesis by reversibly binding to double stranded DNA via the minor groove, with GC-base specificity. At and above physiological pH when CHR is anionic, interaction of CHR with DNA requires the presence of divalent metal ions like Mg2+. However, at acidic pHthe molecule is neutral and it binds DNA even in absence of Mg2+. Molecular dynamics simulation studies at 300K of neutral CHR and 1:1 CHR:Mg2+ complexes formed at pH 5.2 and 8.0 show that hydrophobicity of CHR:Mg2+ complex formed with the neutral drug is greater than that of the two other species. Interactions of CHR with DNA in presence and absence of Mg2+ have been studied by simulated annealing to understand the role of Mg2+ in the DNA binding potential of CHR. This shows that the antibiotic has the structural potential to bind to DNA even in the absence of metal ion. Evaluation of the direct interaction energy between the ligand and DNA does not explain the observed GC-base specificity of the antibiotic. When energy contributions from structural alteration of the interacting ligand and DNA as a sequel to complex formation are taken into account, atrue picture of the theoretical binding propensity emerges. This implies that DNA and/or the ligand undergo significant structural alterations during the process of association, particularly in presence of Mg2+. Accessible surface area calculations give idea about the entropy contribution to the binding free energy which is found to be different depending upon the presence and absence of Mg2+.  相似文献   

14.
15.
Molecular dynamics (MD) simulations have been undertaken in order to investigate the collective solvent reorganization following an instantaneous electronic charge transfer between distinct atomic sites of diatomic probe molecules immersed in methanol–water mixtures. Our previous studies of solvation dynamics in these mixtures [28,29] are extended here to the analysis of nonequilibrium time-dependent solute–solvent site–site pair distribution functions for the equimolar mixture using two different solute sizes. This has allowed us to obtain a more detailed picture of the solvent reorganization in response to the solute's excitation. Special attention is devoted to the dynamics of rupture and formation of hydrogen bonds between the smaller probe solute and solvent molecules, and its relationship to the molecular mechanisms of solvation dynamics in these systems on distinct time scales. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Semiempirical molecular orbital theory has been used for a systematic scan of the binding positions for a Mg2+ ion with 5a,6–anhydrotetracycline taking both conformational flexibility and possible different tautomeric forms into account. The magnesium ion has been calculated alone and with four or five complexed water molecules in order to simulate the experimental situation more closely. The results are analyzed by comparing the behavior of the title compound with that of tetracycline itself and possible causes for the stronger induction of the Tetracycline Receptor (TetR) by 5a,6–anhydrotetracycline than by tetracycline are considered. Energetically favored 3D -structure of the zwitteranionic 5a,6-anhydrotetracycline magnesium complex in solution Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Werner M. Kaiser  Steve Huber 《Planta》1994,193(3):358-364
Nitrate reductase in spinach (Spinacia oleracea L.) leaves was rapidly inactivated in the dark and reactivated by light, whereas in pea (Pisum sativum L.), roots, hyperoxic conditions caused inactivation, and anoxia caused reactivation. Reactivation in vivo, both in leaves and roots, was prohibited by high concentrations (10–30 M) of the serine/threonine-protein phosphatase inhibitors okadaic acid or calyculin, consistent with the notion that protein dephosphorylation catalyzed by type-1 or type-2A phosphatases was the mechanism for the reactivation of NADH-nitrate reductase (NR). Following inactivation of leaf NR in vivo, spontaneous reactivation in vitro (in desalted extracts) was slow, but was drastically accelerated by removal of Mg2+ with excess ethylenediaminetetraacetic acid (EDTA), or by desalting in a buffer devoid of Mg2+. Subsequent addition of either Mg2+, Mn2+ or Ca2+ inhibited the activation of NR in vitro. Reactivation of NR (at pH 7.5) in vitro in the presence of Mg2+ was also accelerated by millimolar concentrations of AMP or other nucleoside monophosphates. The EDTA-mediated reactivation in desalted crude extracts was completely prevented by protein-phosphatase inhibitors whereas the AMP-mediated reaction was largely unaffected by these toxins. The Mg2+-response profile of the AMP-accelerated reactivation suggested that okadaic acid, calyculin and microcystin-LR were rather ineffective inhibitors in the presence of divalent cations. However, with partially purified enzyme preparations (5–15% polyethyleneglycol fraction) the AMPmediated reactivation was also inhibited (65–80%) by microcystin-LR. Thus, the dephosphorylation (activation) of NR in vitro is inhibited by divalent cations, and protein phosphatases of the PP1 or PP2A type are involved in both the EDTA and AMP-stimulated reactions. Evidence was also obtained that divalent cations may regulate NR-protein phosphatase activity in vivo. When spinach leaf slices were incubated in Mg2+ -and Ca2+-free buffer solutions in the dark, extracted NR was inactive. After addition of the Ca2+ /Mg2+-ionophore A 23187 plus EDTA to the leaf slices, NR was activated in the dark. It was again inactivated upon addition of divalent cations (Mg2+ or Ca2+). It is tentatively suggested that Mg2+ fulfills several roles in the regulatory system of NR: it is required for active NR-protein kinase, it inactivates the protein phosphatase and is, at the same time, necessary to keep phospho-NR in the inactive state. The EDTA- and AMP-mediated reactivation of NR in vitro had different pH optima, suggesting that two different protein phosphatases may be involved. At pH 6.5, the activation of NR was relatively slow and the addition or removal of Mg2+ had no effect. However, 5-AMP was a potent activator of the reaction with an apparent K m of 0.5 mM. There was also considerable specificity for 5AMP relative to 3- or 2-AMP or other nucleoside monophoposphates. We conclude that, depending upon conditions, the signals triggering NR modulation in vivo could be either metabolic (e.g. 5-AMP) or physical (e.g. cytosolic [Mg2+]) in nature.Abbreviations DTT dithiothreitol - Mops 3-(N-morpholino)propanesulfonic acid - NR NADH-nitrate reductase - NRA nitrate-reductase activity - PP protein phosphatase This paper is dedicated to Prof. O.K. Volk on the occasion of his 90th birthdayThe skilled technical assistance of Elke Brendle-Behnisch is gratefully acknowledged. The investigations were cooperatively supported by the Deutsche Forschungsgemeinschaft (SFB 251), the U.S. Department of Agriculture, Agricultural Research Services, Raleigh, NC. This work was also supported in part by a grant from the U.S. Department of Energy (Grant DE-A I05-91 ER 20031 to S.C.H.).  相似文献   

18.
Abstract

Perturbation of the hydrogen bonds in the adenine…thymine base pair by Na+, Mg2+, Ca2+ and NH4 + cations has been investigated by means of ab initio SCF calculations with the STO-3G basis set. The geometry of adenine…thymine, as well as those of the perturbed pairs were optimized. Approach of any cation to thymine at 06 leads to destabilization of the adenine…thy mine pair; divalent cations (Mg2+, Ca2+) have a profound effect on the structure of the base pair. The approach of a cation to other available sites (thymine: O2, adenine N1 and N3) leads, on the other hand, to stabilization of the base pair. If a water molecule is placed between the cation and the base pair, the structure and stability of the base pair are changed only negligibly.  相似文献   

19.

Background

Based on clinical, histopathological and serological similarities to human celiac disease (CD), we recently established the rhesus macaque model of gluten sensitivity. In this study, we further characterized this condition based on presence of anti-tissue transglutaminase 2 (TG2) antibodies, increased intestinal permeability and transepithelial transport of a proteolytically resistant, immunotoxic, 33-residue peptide from α2-gliadin in the distal duodenum of gluten-sensitive macaques.

Methodology/Principal Findings

Six rhesus macaques were selected for study from a pool of 500, including two healthy controls and four gluten-sensitive animals with elevated anti-gliadin or anti-TG2 antibodies as well as history of non-infectious chronic diarrhea. Pediatric endoscope-guided pinch biopsies were collected from each animal''s distal duodenum following administration of a gluten-containing diet (GD) and again after remission by gluten-free diet (GFD). Control biopsies always showed normal villous architecture, whereas gluten-sensitive animals on GD exhibited histopathology ranging from mild lymphocytic infiltration to villous atrophy, typical of human CD. Immunofluorescent microscopic analysis of biopsies revealed IgG+ and IgA+ plasma-like cells producing antibodies that colocalized with TG2 in gluten-sensitive macaques only. Following instillation in vivo, the Cy-3-labeled 33-residue gluten peptide colocalized with the brush border protein villin in all animals. In a substantially enteropathic macaque with “leaky” duodenum, the peptide penetrated beneath the epithelium into the lamina propria.

Conclusions/Significance

The rhesus macaque model of gluten sensitivity not only resembles the histopathology of CD but it also may provide a model for studying intestinal permeability in states of epithelial integrity and disrepair.  相似文献   

20.
Nitrate (NO3) and nitrite (NO2) are the physiological sources of nitric oxide (NO), a key biological messenger molecule. NO3/NO2 exerts a beneficial impact on NO homeostasis and its related cardiovascular functions. To visualize the physiological dynamics of NO3/NO2 for assessing the precise roles of these anions, we developed a genetically encoded intermolecular fluorescence resonance energy transfer (FRET)-based indicator, named sNOOOpy (sensor for NO3/NO2 in physiology), by employing NO3/NO2-induced dissociation of NasST involved in the denitrification system of rhizobia. The in vitro use of sNOOOpy shows high specificity for NO3 and NO2, and its FRET signal is changed in response to NO3/NO2 in the micromolar range. Furthermore, both an increase and decrease in cellular NO3 concentration can be detected. sNOOOpy is very simple and potentially applicable to a wide variety of living cells and is expected to provide insights into NO3/NO2 dynamics in various organisms, including plants and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号