首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which plants respond to reduced water availability (low water potential) include both ABA-dependent and ABA-independent processes. Pro accumulation and osmotic adjustment are two important traits for which the mechanisms of regulation by low water potential, and the involvement of ABA, is not well understood. The ABA-deficient mutant, aba2-1, was used to investigate the regulatory role of ABA in low water potential-induced Pro accumulation and osmotic adjustment in seedlings of Arabidopsis thaliana. Low water potential-induced Pro accumulation required wild-type levels of ABA, as well as a change in ABA sensitivity or ABA-independent events. Osmotic adjustment, in contrast, occurred independently of ABA accumulation in aba2-1. Quantification of low water potential-induced ABA and Pro accumulation in five ABA-insensitive mutants, abi1-1, abi2-1, abi3, abi4, and abi5, revealed that abi4 had increased Pro accumulation at low water potential, but a reduced response to exogenous ABA. Both of these responses were modified by sucrose treatment, indicating that ABI4 has a role in connecting ABA and sugar in regulating Pro accumulation. Of the other abi mutants, only abi1 had reduced Pro accumulation in response to low water potential and ABA application. It was also observed that abi1-1 and abi2-1 had increased ABA accumulation. The involvement of these loci in feedback regulation of ABA accumulation may occur through an effect on ABA catabolism or conjugation. These data provide new information on the function of ABA in seedlings exposed to low water potential and define new roles for three of the well-studied abi loci.  相似文献   

2.
3.
Previous work demonstrated that normal levels of endogenous abscisic acid (ABA) are required to maintain shoot growth in well-watered tomato plants independently of effects of hormone status on plant water balance. The results suggested that the impairment of shoot growth in ABA-deficient mutants is at least partly attributable to increased ethylene production. To assess the extent to which ABA maintains shoot growth by ethylene suppression, the growth of ABA-deficient (aba2-1) and ethylene-insensitive (etr1-1) single- and double-mutants of Arabidopsis was examined. To ensure that the results were independent of effects of hormone status on plant water balance, differential relative humidity regimes were used to achieve similar leaf water potentials in all genotypes and treatments. In aba2-1, shoot growth was substantially inhibited and ethylene evolution was doubled compared with the wild type, consistent with the results for tomato. In the aba2-1 etr1-1 double mutant, in which ABA was equally as deficient as in aba2-1 and shoot growth was shown to be insensitive to ethylene, shoot growth was substantially, although incompletely, restored relative to etr1-1. Treatment with ABA resulted in the complete recovery of shoot growth in aba2-1 relative to the wild type, and also significantly increased the growth of aba2-1 etr1-1 such that total leaf area and shoot fresh weight were not significantly lower than in etr1-1. In addition, ABA treatment of aba2-1 etr1-1 restored the wider leaf morphology phenotype exhibited by etr1-1. The results demonstrate that normal levels of endogenous ABA maintain shoot development, particularly leaf expansion, in well-watered Arabidopsis plants, partly by suppressing ethylene synthesis and partly by another mechanism that is independent of ethylene.  相似文献   

4.
5.
To investigate the importance of different processes to heat stress tolerance, 45 Arabidopsis (Arabidopsis thaliana) mutants and one transgenic line were tested for basal and acquired thermotolerance at different stages of growth. Plants tested were defective in signaling pathways (abscisic acid, salicylic acid, ethylene, and oxidative burst signaling) and in reactive oxygen metabolism (ascorbic acid or glutathione production, catalase) or had previously been found to have temperature-related phenotypes (e.g. fatty acid desaturase mutants, uvh6). Mutants were assessed for thermotolerance defects in seed germination, hypocotyl elongation, root growth, and seedling survival. To assess oxidative damage and alterations in the heat shock response, thiobarbituric acid reactive substances, heat shock protein 101, and small heat shock protein levels were determined. Fifteen mutants showed significant phenotypes. Abscisic acid (ABA) signaling mutants (abi1 and abi2) and the UV-sensitive mutant, uvh6, showed the strongest defects in acquired thermotolerance of root growth and seedling survival. Mutations in nicotinamide adenine dinucleotide phosphate oxidase homolog genes (atrbohB and D), ABA biosynthesis mutants (aba1, aba2, and aba3), and NahG transgenic lines (salicylic acid deficient) showed weaker defects. Ethylene signaling mutants (ein2 and etr1) and reactive oxygen metabolism mutants (vtc1, vtc2, npq1, and cad2) were more defective in basal than acquired thermotolerance, especially under high light. All mutants accumulated wild-type levels of heat shock protein 101 and small heat shock proteins. These data indicate that, separate from heat shock protein induction, ABA, active oxygen species, and salicylic acid pathways are involved in acquired thermotolerance and that UVH6 plays a significant role in temperature responses in addition to its role in UV stress.  相似文献   

6.
A noninvasive, cell-autonomous reporter system was developed to monitor the generation and distribution of physiologically active pools of abscisic acid (ABA). ABA response (abi1-1) and biosynthesis (aba2-1) mutants of Arabidopsis (Arabidopsis thaliana) were used to validate the system in the presence and absence of water stress. In the absence of water stress, low levels of ABA-dependent reporter activation were observed in the columella cells and quiescent center of the root as well as in the vascular tissues and stomata of cotyledons, suggesting a nonstress-related role for ABA in these cell types. Exposure of seedlings to exogenous ABA resulted in a uniform pattern of reporter expression. In marked contrast, reporter expression in response to drought stress was predominantly confined to the vasculature and stomata. Surprisingly, water stress applied to the root system resulted in the generation of ABA pools in the shoot but not in the root. The analysis of the response dynamics revealed a spread of physiologically active ABA from the vascular tissue into the areoles of the cotyledons. Later, ABA preferentially activated gene expression in guard cells. The primary sites of ABA action identified by in planta imaging corresponded to the sites of ABA biosynthesis, i.e. guard cells and cells associated with vascular veins. Hence, water stress recognized by the root system predominantly results in shoot-localized ABA action that culminates in a focused response in guard cells.  相似文献   

7.
Xiong L  Ishitani M  Lee H  Zhu JK 《The Plant cell》2001,13(9):2063-2083
To understand low temperature and osmotic stress signaling in plants, we isolated and characterized two allelic Arabidopsis mutants, los5-1 and los5-2, which are impaired in gene induction by cold and osmotic stresses. Expression of RD29A-LUC (the firefly luciferase reporter gene under the control of the stress-responsive RD29A promoter) in response to cold and salt/drought is reduced in the los5 mutants, but the response to abscisic acid (ABA) remains unaltered. RNA gel blot analysis indicates that the los5 mutation reduces the induction of several stress-responsive genes by cold and severely diminishes or even completely blocks the induction of RD29A, COR15, COR47, RD22, and P5CS by osmotic stresses. los5 mutant plants are compromised in their tolerance to freezing, salt, or drought stress. los5 plants are ABA deficient, as indicated by increased transpirational water loss and reduced accumulation of ABA under drought stress in the mutant. A comparison with another ABA-deficient mutant, aba1, reveals that the impaired low-temperature gene regulation is specific to the los5 mutation. Genetic tests suggest that los5 is allelic to aba3. Map-based cloning reveals that LOS5/ABA3 encodes a molybdenum cofactor (MoCo) sulfurase. MoCo sulfurase catalyzes the generation of the sulfurylated form of MoCo, a cofactor required by aldehyde oxidase that functions in the last step of ABA biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. Our results show that LOS5/ABA3 is a key regulator of ABA biosynthesis, stress-responsive gene expression, and stress tolerance.  相似文献   

8.
9.
Hansen H  Grossmann K 《Plant physiology》2000,124(3):1437-1448
The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6, 6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mM IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [(3)H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA-deficient tomato mutants (notabilis, flacca, and sitiens), and quantification of xanthophylls indicate that ABA biosynthesis is influenced, probably through stimulated cleavage of xanthophylls to xanthoxal in shoot tissue.  相似文献   

10.
Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.  相似文献   

11.
Drought rhizogenesis is an adaptive strategy that occurs during progressive drought stress and is characterized in the Brassicaceae and related families by the formation of short, tuberized, hairless roots. These roots are capable of withstanding a prolonged drought period and give rise to a new functional root system upon rehydration. The kinetics of drought rhizogenesis during progressive water shortage was analyzed in the Arabidopsis thaliana wild-type ecotypes Landsberg erecta and Columbia. In both genotypes, this response started from a similar threshold of soil humidity (about 2%). The intensity of drought rhizogenesis was compared in various A. thaliana hormonal mutants. The wild-type lines and most of the mutants achieved a similiar drought rhizogenetic index (DRI), defined as the maximum number of short roots produced per mg of root biomass, after progressive drought stress. However, this DRI was dramatically reduced in the abscisic acid (ABA)-deficient aba, ABA-insensitive abi1-1, and auxin-resistant axr1-3 mutants. These data indicate that endogenous ABA and auxin play a promotive role in drought rhizogenesis. The DRI was highly increased in the gibberellin (GA) biosynthetic mutant ga5, suggesting that some GAs might also participate in this process. The possible role and identity of the GA species involved is discussed in view of the unaltered DRI values of the ga2, ga3, and ga4 mutants. The present analysis also allowed further discrimination among the various ABA-insensitive (abi1 versus abi2 and abi3) and auxin-resistant (axr1 versus aux1) mutants tested. In particular, drought rhizogenesis is the first physiological response shown to be differentially affected by the abi1-1 and abi2-1 mutations.  相似文献   

12.
13.
Pytohormone abscisic acid(ABA) plays important roles in defense responses.Nonetheless,how ABA regulates plant resistance to biotrophic fungi remains largely unknown.Arabidopsis ABA-deficient mutants,aba2-1 and aba3-1,displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum.Moreover,exogenously administered ABA increased the susceptibility of Arabidopsis to G.cichoracearum.Arabidopsis ABA perception components mutants,abil-1 and abi2-1,also displayed similar phenotypes to ABA-deficient mutants in resistance to G.cichoracearum.However,the resistance to G.cichoracearum is not changed in downstream ABA signaling transduction mutants,abi3-1,abi4-1,and abi5-1.Microscopic examination revealed that hyphal growth and conidiophore production of G.cichoracearum were compromised in the ABA deficient mutants,even though pre-penetration and penetration growth of the fungus were not affected.In addition,salicylic acid(SA) and MPK3 are found to be involved in ABA-regulated resistance to G.cichoracearum.Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G.cichoracearum,probably through antagonizing the function of SA.  相似文献   

14.
In response to drought, plants synthesise the hormone abscisic acid (ABA), which triggers closure of the stomatal pores. This process is vital for plants to conserve water by reducing transpirational water loss. Moreover, recent studies have demonstrated the advantages of the Arabidopsis stomatal guard cell for combining genetic, molecular and biophysical approaches to characterise ABA action. However, genetic dissection of stomatal regulation has been limited by the difficulty of identifying a reliable phenotype for mutant screening. Leaf temperature can be used as an indicator to detect mutants with altered stomatal control, since transpiration causes leaf cooling. In this study, we optimised experimental conditions under which individual Arabidopsis plants with altered stomatal responses to drought can be identified by infrared thermography. These conditions were then used to perform a pilot screen for mutants that displayed a reduced ability to close their stomata and hence appeared colder than the wild type. Some of the mutants recovered were deficient in ABA accumulation, and corresponded to alleles of the ABA biosynthesis loci ABA1, ABA2 and ABA3. Interestingly, two of these novel aba2 alleles were able to intragenically complement the aba2-1 mutation. The remaining mutants showed reduced ABA responsiveness in guard cells. In addition to the previously known abi1-1 mutation, we isolated mutations at two novel loci designated as OST1 (OPEN STOMATA 1) and OST2. Remarkably, ost1 and ost2 represent, to our knowledge, the first Arabidopsis mutations altering ABA responsiveness in stomata and not in seeds.  相似文献   

15.
16.
Several plant hormones, including auxin, brassinosteroids and gibberellins, are required for skotomorphogenesis, which is the etiolated growth that seedlings undergo in the absence of light. To examine the growth of abscisic acid (ABA)-deficient mutants in the dark, we analysed several aba1 loss-of-function alleles, which are deficient in zeaxanthin epoxidase. The aba1 mutants displayed a partially de-etiolated phenotype, including reduced hypocotyl growth, cotyledon expansion and the development of true leaves, during late skotomorphogenic growth. In contrast, only small differences in hypocotyl growth were found between wild-type seedlings and ABA-deficient mutants impaired in subsequent steps of the pathway, namely nced3, aba2, aba3 and aao3. Interestingly, phenocopies of the partially de-etiolated phenotype of the aba1 mutants were obtained when wild-type seedlings were dark-grown on medium supplemented with fluridone, an inhibitor of phytoene desaturase, and hence, of carotenoid biosynthesis. ABA supplementation did not restore the normal skotomorphogenic growth of aba1 mutants or fluridone-treated wild-type plants, suggesting a direct inhibitory effect of fluridone on carotenoid biosynthesis. In addition, aba1 mutants showed impaired production of the beta-carotene-derived xanthophylls, neoxanthin, violaxanthin and antheraxanthin. Because fluridone treatment of wild-type plants phenocopied the phenotype of dark-grown aba1 mutants, impaired carotenoid biosynthesis in aba1 mutants is probably responsible for the observed skotomorphogenic phenotype. Thus, ABA1 is required for skotomorphogenic growth, and beta-carotene-derived xanthophylls are putative regulators of skotomorphogenesis.  相似文献   

17.
The formation of lateral roots (LR) is a major post-embryonic developmental event in plants. In Arabidopsis thaliana, LR development is inhibited by high concentrations of NO3(-). Here we present strong evidence that ABA plays an important role in mediating the effects of NO3(-) on LR formation. Firstly, the inhibitory effect of NO3(-) is significantly reduced in three ABA insensitive mutants, abi4-1, abi4-2 and abi5-1, but not in abi1-1, abi2-1 and abi3-1. Secondly, inhibition by NO3(-) is significantly reduced, but not completely abolished, in four ABA synthesis mutants, aba1-1, aba2-3, aba2-4 and aba3-2. These results indicate that there are two regulatory pathways mediating the inhibitory effects of NO3(-) in A. thaliana roots. One pathway is ABA-dependent and involves ABI4 and ABI5, whereas the second pathway is ABA-independent. In addition, ABA also plays a role in mediating the stimulation of LR elongation by local NO3(-) applications.  相似文献   

18.
土壤干旱条件下氮素营养对玉米内源激素含量影响   总被引:8,自引:6,他引:8  
张岁岐  山仑 《应用生态学报》2003,14(9):1503-1506
在田间持水量分别保持于35%、55%和75%±5%的土壤水分条件下,利用盆栽实验研究了土壤干旱和氮素营养对玉米内源激素和气孔导度的影响.结果表明,土壤干旱下氮素营养明显降低了玉米根系木质部汁液ABA浓度,而正常供水下施氮处理间则无显著差异(施氮处理仍较低),同时测定的叶片ABA浓度则呈相反的变化趋势,表现为干旱下施氮处理要高于不施氮处理;施氮处理木质部汁液中ZRs浓度应低于相应的不施氮处理,在调控气孔行为方面并未表现拮抗ABA作用;3种土壤水分条件下,施氮玉米叶片的气孔导度均高于不施氮处理,与木质部汁液ABA浓度呈负相关,说明施氮处理较低的根源ABA浓度是导致其气孔导度较大的主要原因.  相似文献   

19.
The toxicity of proline (Pro) to plant growth has raised questions despite its protective functions in response to environmental stresses. To evaluate Pro toxicity, we isolated an Arabidopsis T-DNA-tagged mutant, pdh, that had a defect in Pro dehydrogenase (AtProDH), which catalyzes the first step of Pro catabolism. The pdh mutant showed hypersensitivity to exogenous application of < or =10 mM L-Pro, at which wild-type plants grew normally. A dose-dependent increase in internal free Pro accumulation was observed in pdh plants during external Pro supply. These results do not just prove the toxicity of Pro, but also suggest that AtProDH is the only enzyme acting as a functional ProDH in ARABIDOPSIS: To further analyze the targets of Pro toxicity, we compared the expression of thousands of genes by pdh plants with that by wild-type plants by cDNA microarray analysis. Most genes were unaffected. Here we demonstrate Pro toxicity by using the pdh mutant and discuss a cause-and-effect action between an excess of free Pro and growth inhibition in ARABIDOPSIS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号