首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Zhou J  Jiao F  Wu Z  Li Y  Wang X  He X  Zhong W  Wu P 《Plant physiology》2008,146(4):1673-1686
Previous research has demonstrated that AtPHR1 plays a central role in phosphate (Pi)-starvation signaling in Arabidopsis thaliana. In this work, two OsPHR genes from rice (Oryza sativa) were isolated and designated as OsPHR1 and OsPHR2 based on amino acid sequence homology to AtPHR1. Their functions in Pi signaling in rice were investigated using transgenic plants. Our results showed that both OsPHR1 and OsPHR2 are involved in Pi-starvation signaling pathway by regulation of the expression of Pi-starvation-induced genes, whereas only OsPHR2 overexpression results in the excessive accumulation of Pi in shoots under Pi-sufficient conditions. Under Pi-sufficient conditions, overexpression of OsPHR2 mimics Pi-starvation stress in rice with enhanced root elongation and proliferated root hair growth, suggesting the involvement of OsPHR2 in Pi-dependent root architecture alteration by both systematic and local pathways. In OsPHR2-overexpression plants, some Pi transporters were up-regulated under Pi-sufficient conditions, which correlates with the strongly increased content of Pi. The mechanism behind the OsPHR2 regulated Pi accumulation will provide useful approaches to develop smart plants with high Pi efficiency.  相似文献   

8.
9.
Phosphorus (P) is one of the most important major mineral elements for plant growth and metabolism. Plants have evolved adaptive regulatory mechanisms to maintain phosphate (Pi) homeostasis by improving phosphorus uptake, translocation, remobilization and efficiency of use. Here we review recent advances in our understanding of the OsPHR2-mediated phosphate-signaling pathway in rice. OsPHR2 positively regulates the low-affinity Pi transporter OsPT2 through physical interaction and reciprocal regulation of OsPHO2 in roots. OsPT2 is responsible for most of the OsPHR2-mediated accumulation of excess Pi in shoots. OsSPX1 acts as a repressor in the OsPHR2-mediated phosphate-signaling pathway. Some mutants screened from ethyl methanesulfonate (EMS)-mutagenized M2 population of OsPHR2 overexpression transgenic line removed the growth inhibition, indicating that some unknown factors are crucial for Pi utilization or plant growth under the regulation of OsPHR2.  相似文献   

10.
Purple acid phosphatase (PAP) catalyzes the hydrolysis of phosphate monoesters and anhydrides to release phosphate within an acidic pH range. Among the 29 PAP-like proteins in Arabidopsis (Arabidopsis thaliana), AtPAP15 (At3g07130) displays a greater degree of amino acid identity with soybean (Glycine max; GmPHY) and tobacco (Nicotiana tabacum) PAP (NtPAP) with phytase activity than the other AtPAPs. In this study, transgenic Arabidopsis that expressed an AtPAP15 promoter∷β-glucuronidase (GUS) fusion protein showed that AtPAP15 expression was developmentally and temporally regulated, with strong GUS staining at the early stages of seedling growth and pollen germination. The expression was also organ/tissue specific, with strongest GUS staining in the vasculature, pollen grains, and roots. The recombinant AtPAP purified from transgenic tobacco exhibited broad substrate specificity with moderate phytase activity. AtPAP15 T-DNA insertion lines exhibited a lower phytase and phosphatase activity in seedling and germinating pollen and lower pollen germination rate compared with the wild type and their complementation lines. Therefore, AtPAP15 likely mobilizes phosphorus reserves in plants, particularly during seed and pollen germination. Since AtPAP15 is not expressed in the root hair or in the epidermal cells, it is unlikely to play any role in external phosphorus assimilation.At pH in the range of 4 to 7, purple acid phosphatases (PAPs) catalyze the hydrolysis of a wide range of activated phosphoric acid monoesters and diesters and anhydrides (Klabunde et al., 1996). They are distinguished from the other phosphatases by their insensitivity to l-(+) tartrate inhibition and therefore are also known as tartrate-resistant acid phosphatases. Their characteristic pink or purple color derives from a charge transfer transition between a Tyr residue and the “chromophoric” ferric ion in the binuclear Fe(III)-Me(II) center, where the metal (Me) is iron, zinc, or manganese (Schenk et al., 1999). PAP proteins are also characterized by seven conserved amino acid residues (shown in boldface) in the five conserved motifs DXG, GDXXY, GNH(D/E), VXXH, and GHXH, which are involved in the coordination of the dimetal nuclear center (Li et al., 2002).PAPs are widespread in mammals, fungi, bacteria, and plants. Interestingly, while only a few copies of PAP-like genes are present in mammalian and fungal genomes (Mullaney and Ullah, 2003; Flanagan et al., 2006), multiple copies are present in plant genomes (Schenk et al., 2000). For example, 29 PAP-like genes have been identified in the Arabidopsis (Arabidopsis thaliana) genome (Li et al., 2002). It is intriguing that so many PAP-like genes are required for plant metabolism; this diverse portfolio of PAP-like genes implies differential functions for them. Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution based on their ability to hydrolyze phosphorus compounds (Cashikar et al., 1997; Bozzo et al., 2004; Lung et al., 2008). However, additional biological roles have been reported for some plant PAPs. For example, the PAPs AtACP5 (AtPAP17), SAP1, and SAP2 (del Pozo et al., 1999; Bozzo et al., 2002) display not only phosphatase but also peroxidase activity, suggesting their involvement in the removal of reactive oxygen compounds in plant organs. GmPAP3, isolated from salted-stressed soybean (Glycine max), reportedly mediates salt tolerance via NaCl and oxidative stress inductions but not by phosphorus starvation (Liao et al., 2003).Some PAP members can hydrolyze phytic acid (myoinositol hexakisphosphate [InsP6]) to inorganic phosphate and free or lower phosphoric esters of myoinositol. Since the major storage form of phosphorus in plant seeds and pollen grains is phytate, PAPs with phytase activity may play a role in seed and pollen germination. However, not all PAPs exhibit phytase activity. The first plant phytase PAP, GmPHY, was isolated from the cotyledon of germinating soybean seedlings (Hegeman and Grabau, 2001). A tobacco (Nicotiana tabacum) root PAP phytase was identified more recently that is likely involved in mobilizing external organic phosphorus in soil (Lung et al., 2008).Relatively little is known about the biochemical properties and physiological roles of the 29 PAP-like Arabidopsis genes (del Pozo et al., 1999; Veljanovski et al., 2006). An enzyme assay involving the glutathione S-transferase (GST)-AtPAP23 fusion protein revealed that the Arabidopsis PAP AtPAP23 exhibits phytase activity (Zhu et al., 2005). A GUS study showed that AtPAP23 is exclusively expressed in the flower of the Arabidopsis plant. In a recent report, a recombinant AtPAP15 expressed in Escherichia coli was also found to exhibit phytase activity; this PAP potentially modulates plant ascorbate synthesis through supply of myoinositol from the phytate hydrolysis reaction (Zhang et al., 2008). However, the possible physiological roles of AtPAP15 in phosphorus mobilization have not been examined.In this study, AtPAP15 expressed in a plant (tobacco) system was biochemically characterized, and its temporal and spatial expression patterns in Arabidopsis were examined. The physiological roles of AtPAP15 in phosphorus mobilization were also delineated.  相似文献   

11.
Phosphatidic acid phosphatase (PAP) converts phosphatidic acid to diacylglycerol, thus regulating the de novo synthesis of glycerolipids and also signal transduction mediated by phospholipase D. We initially succeeded in the cDNA cloning of the mouse 35 kDa PAP bound to plasma membranes (type 2 enzyme). This work subsequently led us to the identification of two human PAP isozymes designated 2a and 2b. A third human PAP isozyme (2c) has also been described. The cloned enzymes are, in common, N-glycosylated and possess six transmembrane domains. The transmembrane dispositions of these enzymes are predicted and the catalytic sites are tentatively located in the 2nd and 3rd extracellular loops, thus suggesting that the type 2 PAPs may act as ecto-enzymes dephosphorylating exogenous substrates. Furthermore, the type 2 PAPs have been proposed to belong to a novel phosphatase superfamily consisting of a number of soluble and membrane-bound enzymes. In vitro enzyme assays show that the type 2 PAPs can dephosphorylate lyso-phosphatidate, ceramide-1-phosphate, sphingosine-1-phosphate and diacylglycerol pyrophosphate. Although the physiological implications of such a broad substrate specificity need to be further investigated, the type 2 PAPs appear to metabolize a wide range of lipid mediators derived from both glycero- and sphingolipids.  相似文献   

12.
Bozzo GG  Singh VK  Plaxton WC 《FEBS letters》2004,573(1-3):51-54
Within 48 h of the addition of 2.5 mM phosphate (HPO42-, Pi) or phosphite (H2PO3-, Phi) to 8-day-old Pi-starved (-Pi) tomato suspension cells: (i) secreted and intracellular purple acid phosphatase (PAP) activities decreased by about 12- and 6-fold, respectively and (ii) immunoreactive PAP polypeptides either disappeared (secreted PAPs) or were substantially reduced (intracellular PAP). The degradation of both secreted PAP isozymes was correlated with the de novo synthesis of two extracellular serine proteases having M(r)s of 137 and 121 kDa. In vitro proteolysis of purified secreted tomato PAP isozymes occurred following their 24 h incubation with culture filtrate from Pi-resupplied cells. The results indicate that Pi or Phi addition to -Pi tomato cells induces serine proteases that degrade Pi-starvation inducible extracellular proteins.  相似文献   

13.
To cope with low phosphate (Pi) availability, plants have to adjust its gene expression profile to facilitate Pi acquisition and remobilization. Sensing the levels of Pi is essential for reprogramming the gene expression profile to adapt to the fluctuating Pi environment. AtPHR1 in Arabidopsis and OsPHR2 in rice are central regulators of Pi signaling, which regulates the expression of phosphate starvation-induced (PSI) genes by binding to the P1BS elements in the promoter of PSI genes. However, how the Pi level affects the central regulator to regulate the PSI genes have puzzled us for a decade. Recent progress in SPX proteins indicated that the SPX proteins play important role in regulating the activity of central regulator AtPHR1/OsPHR2 in a Pi dependent manner at different subcellular levels.  相似文献   

14.
Plastidic phosphatidic acid phosphatase (PAP) dephosphorylates phosphatidic acid to yield diacylglycerol, which is a precursor for galactolipids, a primary and indispensable component of photosynthetic membranes. Despite its functional importance, the molecular characteristics and phylogenetic origin of plastidic PAP were unknown because no potential homologs have been found. Here, we report the isolation and characterization of plastidic PAPs in Arabidopsis that belong to a distinct lipid phosphate phosphatase (LPP) subfamily with prokaryotic origin. Because no homolog of mammalian LPP was found in cyanobacteria, we sought an LPP ortholog in a more primitive organism, Chlorobium tepidum, and its homologs in cyanobacteria. Arabidopsis had five homologs of cyanobacterial LPP, three of which (LPP gamma, LPP epsilon 1, and LPP epsilon 2) localized to chloroplasts. Complementation of yeast Delta dpp1 Delta lpp1 Delta pah1 by plastidic LPPs rescued the relevant phenotype in vitro and in vivo, suggesting that they function as PAPs. Of the three LPPs, LPP gamma activity best resembled the native activity. The three plastidic LPPs were differentially expressed both in green and nongreen tissues, with LPP gamma expressed the highest in shoots. A knock-out mutant for LPP gamma could not be obtained, although a lpp epsilon 1 lpp epsilon 2 double knock-out showed no significant changes in lipid composition. However, lpp gamma homozygous mutant was isolated only under ectopic overexpression of LPP gamma, suggesting that loss of LPP gamma may cause lethal effect on plant viability. Thus, in Arabidopsis, there are three isoforms of plastidic PAP that belong to a distinct subfamily of LPP, and LPP gamma may be the primary plastidic PAP.  相似文献   

15.
16.
17.
We developed a method using nitrocellulose membranes and image analysis to localise and quantify acid phosphatase activity in the rhizosphere of two plant species, one with cluster roots (Dryandra sessilis (Knight) Domin) and another with ectomycorrhizal roots (Pinus taeda L.). Membranes were placed in contact with roots and then treated with a solution of x, α-naphthyl phosphate and Fast Red TR. Acid phosphatase activity was visualised as a red imprint on the membrane. We quantified acid phosphatase activity by image analysis of scanned imprints. The method was used to estimate the spatial distribution of acid phosphatase activity within particular root classes (lateral roots, mycorrhizal roots, root clusters). Over 95% of the acid phosphatase activity of the root system of D. sessilis was associated with cluster roots, and between 20 and 32% of the root surface active. About 26 % of the acid phosphatase activity of the root system of P. taeda was associated with mycorrhizal roots and unsuberised white root tips and less than 10% of the root surface was active, irrespective of root type. This non-destructive method can be used for rapid, semi-quantitative assessment of acid phosphatase activity in the laboratory and in situ. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
? Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1. ? AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions. ? Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dual-targeted to both plastids and mitochondria by a C-terminal targeting signal. ? One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism.  相似文献   

19.
Tartrate-resistant purple acid phosphatase (TRAP) of osteoclasts and certain cells of the monocyte-macrophage lineage belongs to the family of purple acid phosphatases (PAPs). We provide here evidence for TRAP/PAP expression in the central and peripheral nervous systems in the rat. TRAP/PAP protein was partially purified and characterized from the trigeminal ganglion, brain, and spinal cord. The TRAP activity (U/mg tissue) in these tissues was about 10-20 times lower than in bone. Reducing agents, e.g. ascorbate and ferric iron, increased the TRAP activity from the neural tissues (nTRAP) and addition of oxidizing agents completely inactivated both bone and nTRAP. The IC(50) for three known oxyanion inhibitors of TRAP/PAP was similar for bone and nTRAP with the same rank order of potency (molybdate > tungstate > phosphate). This indicates that the redox-sensitive binuclear iron center characteristic of mammalian PAPs is present also in nTRAP. Western blots of partially purified nTRAP revealed a band with the expected size of 35 kD. The expression of TRAP in the trigeminal ganglion, brain, and spinal cord was confirmed at the mRNA level by RT-PCR. In situ hybridization histochemistry demonstrated TRAP mRNA expression in small ganglion cells of the trigeminal ganglion, in alpha-motor neurons of the ventral spinal cord, and in Purkinje cells of the cerebellum. TRAP-like immunoreactivity was encountered in the cytoplasm of neuronal cell bodies in specific areas of both the central and the peripheral nervous system. Together, the data demonstrate that active TRAP/PAP is expressed in certain parts of the rat nervous system.  相似文献   

20.
Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have a multitude of biological functions and are found in fungi, bacteria, plants and animals. In mammals, PAP activity is linked with bone resorption and over-expression can lead to bone disorders such as osteoporosis. PAP is therefore an attractive target for the development of drugs to treat this disease. A series of penicillin conjugates, in which 6-aminopenicillanic acid was acylated with aromatic acid chlorides, has been prepared and assayed against pig PAP. The binding mode of most of these conjugates is purely competitive, and some members of this class have potencies comparable to the best PAP inhibitors yet reported. The structurally related penicillin G was shown to be neither an inhibitor nor a substrate for pig PAP. Molecular modelling has been used to examine the binding modes of these compounds in the active site of the enzyme and to rationalise their activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号