共查询到20条相似文献,搜索用时 15 毫秒
1.
Henrik G. Dohlman 《The Journal of biological chemistry》2016,291(15):7786-7787
All cells discriminate environmental signals and generate appropriate intracellular responses. Our understanding of these signal transduction mechanisms has benefitted from studies across the kingdoms of life, from fungi and fish to mice and men. This thematic minireview series examines lessons learned from three of the simplest (and best understood) eukaryotic model organisms. The first article focuses on the mating pheromone pathway in budding yeast Saccharomyces cerevisiae. The second describes stress-mediated signaling in the roundworm Caenorhabditis elegans. The third outlines some of the signaling pathways that dictate growth and development in the fruit fly Drosophila melanogaster. Each system has provided unique insights into hormone and neurotransmitter signaling mechanisms, in particular those mediated by the MAPKs. The advances described in these articles will continue to improve our understanding of human physiology and pharmacology. 相似文献
2.
3.
4.
Davide Caprini Silvia Schwartz Enrico Lanza Edoardo Milanetti Valeria Lucente Giuseppe Ferrarese Letizia Chiodo Martina Nicoletti Viola Folli 《Advanced Biosystems》2021,5(9):2100927
AWC olfactory neurons are fundamental for chemotaxis toward volatile attractants in Caenorhabditis elegans. Here, it is shown that AWCON responds not only to chemicals but also to mechanical stimuli caused by fluid flow changes in a microfluidic device. The dynamics of calcium events are correlated with the stimulus amplitude. It is further shown that the mechanosensitivity of AWCON neurons has an intrinsic nature rather than a synaptic origin, and the calcium transient response is mediated by TAX-4 cGMP-gated cation channel, suggesting the involvement of one or more “odorant” receptors in AWCON mechano-transduction. In many cases, the responses show plateau properties resembling bistable calcium dynamics where neurons can switch from one stable state to the other. To investigate the unprecedentedly observed mechanosensitivity of AWCON neurons, a novel microfluidic device is designed to minimize the fluid shear flow in the arena hosting the nematodes. Animals in this device show reduced neuronal activation of AWCON neurons. The results observed indicate that the tangential component of the mechanical stress is the main contributor to the mechanosensitivity of AWCON. Furthermore, the microfluidic platform, integrating shearless perfusion and calcium imaging, provides a novel and more controlled solution for in vivo analysis both in micro-organisms and cultured cells. 相似文献
5.
The mammalian microtubule-associated proteins (MAPs), MAP2, MAP4, and τ, are structurally similar and considered to be evolutionarily related. The primary structure of a nematode MAP, PTL-1, also reportedly resembles those of the MAPs, but only in a small portion of the molecule. In this study, we elucidated the overall domain organization of PTL-1, using a molecular dissection technique. Firstly, we isolated nematode microtubules and proved that the recombinant PTL-1 binds to nematode and porcine microtubules with similar affinities. Then, the recombinant PTL-1 was genetically dissected to generate four shorter polypeptides, and their microtubule-binding and assembly promoting activities were assessed, using porcine microtubules and tubulin. PTL-1 was found to consist of two parts, microtubule-binding and projection domains, with the former further divided into three functionally distinct subdomains. The molecular architecture of PTL-1 was proved to be quite analogous to its mammalian counterparts, MAP2, MAP4, and τ, strongly supporting their evolutionary relationships. 相似文献
6.
Here, we report that inactivation of the Caenorhabditis elegans dynamin-related protein DRP-1, a key component responsible for mitochondrial fission and conserved from yeast to humans, dramatically enhanced the effect of reduced insulin signaling (IIS) to extend lifespan. This represents the first report of a beneficial impact of manipulating mitochondrial dynamics on animal lifespan and suggests that mitochondrial morphology and IIS cooperate to modulate aging. 相似文献
7.
Stacy A. Henry Selina Crivello Tina M. Nguyen Magdalena Cybulska Ngoc S. Hoang Mary Nguyen Tajinder Badial Nazgol Emami Nasma Awada Johnathen F. Woodward Christopher H. So 《Cell stress & chaperones》2021,26(1):187
Survival and adaptation to oxidative stress is important for many organisms, and these occur through the activation of many different signaling pathways. In this report, we showed that Caenorhabditis (C.) elegans G protein–coupled receptor kinases modified the ability of the organism to resist oxidative stress. In acute oxidative stress studies using juglone, loss-of-function grk-2 mutants were more resistant to oxidative stress compared with loss-of-function grk-1 mutants and the wild-type N2 animals. This effect was Ce-AKT-1 dependent, suggesting that Ce-GRK2 adjusted C. elegans oxidative stress resistance through the IGF/insulin-like signaling (IIS) pathway. Treating C. elegans with a GRK2 inhibitor, the selective serotonin reuptake inhibitor paroxetine, resulted in increased acute oxidative stress resistance compared with another selective serotonin reuptake inhibitor, fluoxetine. In chronic oxidative stress studies with paraquat, both grk-1 and grk-2 mutants had longer lifespan compared with the wild-type N2 animals in stress. In summary, this research showed the importance of both GRKs, especially GRK2, in modifying oxidative stress resistance. 相似文献
8.
Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKCη, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug — Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKCη in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKCη. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKCη expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKCη is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKCη could represent a target for intervention aimed to reduce resistance to anti-cancer treatments. 相似文献
9.
The nematode Caenorhabditis elegans has been a powerful model system for the study of key muscle genes relevant to human neuromuscular function and disorders. The behavioral robustness of C. elegans, however, has hindered its use in the study of certain neuromuscular disorders because many worm models of human disease show only subtle phenotypes while crawling. By contrast, in their natural habitat, C. elegans likely spends much of the time burrowing through the soil matrix. We developed a burrowing assay to challenge motor output by placing worms in agar‐filled pipettes of increasing densities. We find that burrowing involves distinct kinematics and turning strategies from crawling that vary with the properties of the substrate. We show that mutants mimicking Duchenne muscular dystrophy by lacking a functional ortholog of the dystrophin protein, DYS‐1, crawl normally but are severely impaired in burrowing. Muscular degeneration in the dys‐1 mutant is hastened and exacerbated by burrowing, while wild type shows no such damage. To test whether neuromuscular integrity might be compensated genetically in the dys‐1 mutant, we performed a genetic screen and isolated several suppressor mutants with proficient burrowing in a dys‐1 mutant background. Further study of burrowing in C. elegans will enhance the study of diseases affecting neuromuscular integrity, and will provide insights into the natural behavior of this and other nematodes. 相似文献
10.
In response to stressful growth conditions of high population density, food scarcity, and elevated temperature, young larvae of nematode Caenorhabditis elegans can enter a developmentally arrested stage called dauer that is characterized by dramatic anatomic and metabolic remodeling. Genetic analysis of dauer formation of C. elegans has served as an experimental paradigm for the identification and characterization of conserved neuroendocrine signaling pathways. Here, we report the identification and characterization of a conserved c-Jun N-terminal Kinase-like mitogen-activated protein kinase (MAPK) pathway that is required for dauer formation in response to environmental stressors. We observed that loss-of-function mutations in the MLK-1-MEK-1-KGB-1 MAPK pathway suppress dauer entry. A loss-of-function mutation in the VHP-1 MAPK phosphatase, a negative regulator of KGB-1 signaling, results in constitutive dauer formation, which is dependent on the presence of dauer pheromone but independent of diminished food levels or elevated temperatures. Our data suggest that the KGB-1 pathway acts in the sensory neurons, in parallel to established insulin and TGF- signaling pathways, to transduce the dauer-inducing environmental cues of diminished food levels and elevated temperature. 相似文献
11.
Xiaowen Huang Wen Pan Wooseong Kim Alexis White Silei Li Huiying Li Kiho Lee Beth Burgwyn Fuchs Kang Zeng Eleftherios Mylonakis 《Cellular microbiology》2020,22(10)
Cutibacterium acnes is capable of inducing inflammation in acne and can lead to a chronic prostatic infection. The diverse pathogenicity among different strains of C. acnes has been presented, but simple appropriate animal models for the evaluation of this bacterium are lacking. In this study, the nematode Caenorhabditis elegans was used as an invertebrate infection model. We revealed that C. acnes type strain ATCC 6919 caused lethal infections to C. elegans in solid and liquid culture media (p < .0001). Compared with the strain ATCC 6919, the antibiotic‐resistant strain HM‐513 was more virulent, resulting in reduced survival (p < .0001). Four different C. acnes strains killed worms with a p value of less than .0001 when provided to C. elegans at 4.8 × 108 CFU/ml. The infection model was also employed to explore host defence responses. An increase in numerous immune effectors in response to C. acnes was detected. We focused on nine C‐type lectins, including: clec‐13, clec‐17, clec‐47, clec‐52, clec‐60, clec‐61, clec‐70, clec‐71 and clec‐227. The induced expression of these C‐type lectin genes was down‐regulated in mutant worms deficient in the p38 mitogen‐activated protein kinase (MAPK) pathway. Meanwhile, PMK‐1 (MAPK) was phosphorylated and activated at the onset of C. acnes infection. By monitoring the survival of mutant worms, we found that PMK‐1, SEK‐1 (MAPKK) and TIR‐1 (MAPKKK) were critical in responding to C. acnes infection. C. elegans pmk‐1 and tir‐1 mutants exhibited higher mortality to C. acnes infection (p < .0001). In conclusion, C. elegans serves as a simple and valuable model to study C. acnes virulence and facilitates improvements in understanding of host innate immune responses. 相似文献
12.
13.
The molecular mechanism of the anti-adipogenic effect of evodiamine (which has several capsaicin-like pharmacological actions) was investigated. The evodiamine effect was not blocked by the specific TRPV1 antagonist capsazepine in 3T3-L1 preadipocytes, whereas its effect was greatly curtailed by inhibitors of protein kinase C (PKC) and epidermal growth factor receptor (EGFR). Signal analyses showed that evodiamine stimulated the phosphorylation of EGFR, PKCα, and ERK, all of which were reduced by an EGFR inhibitor. Silencing experiments of EGFR mRNA supported the involvement of these signaling molecules in the inhibitory effect of evodiamine. An unidentified mechanism whereby evodiamine inhibits adipogenesis via the EGFR-PKCα-ERK signaling pathway was revealed. 相似文献
14.
15.
Christian Frkjr‐Jensen Katie S. Kindt Rex A. Kerr Hiroshi Suzuki Katya Melnik‐Martinez Beate Gerstbreih Monica Driscol William R. Schafer 《Developmental neurobiology》2006,66(10):1125-1139
Voltage‐gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC α1 subunit EGL‐19 and α2/δ subunit UNC‐36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein‐based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction‐of‐function mutation in egl‐19 and significantly reduced by L‐type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L‐type channels. Transients did not depend directly on intracellular calcium stores, although a store‐independent 2‐APB and gadolinium‐sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc‐36, which encodes the main neuronal α2/δ subunit in C. elegans. Interestingly, while egl‐19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc‐36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL‐19 and UNC‐36 in excitability and functional activity of the mechanosensory neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 相似文献
16.
17.
Ehud Cohen Deguo Du Derek Joyce Erik A. Kapernick Yuli Volovik Jeffery W. Kelly Andrew Dillin 《Aging cell》2010,9(2):126-134
Toxic protein aggregation (proteotoxicity) is a unifying feature in the development of late‐onset human neurodegenerative disorders. Reduction of insulin/IGF‐1 signaling (IIS), a prominent lifespan, developmental and reproductive regulatory pathway, protects worms from proteotoxicity associated with the aggregation of the Alzheimer’s disease‐linked Aβ peptide. We utilized transgenic nematodes that express human Aβ and found that late life IIS reduction efficiently protects from Aβ toxicity without affecting development, reproduction or lifespan. To alleviate proteotoxic stress in the animal, the IIS requires heat shock factor (HSF)‐1 to modulate a protein disaggregase, while DAF‐16 regulates a presumptive active aggregase, raising the question of how these opposing activities could be co‐regulated. One possibility is that HSF‐1 and DAF‐16 have distinct temporal requirements for protection from proteotoxicity. Using a conditional RNAi approach, we found an early requirement for HSF‐1 that is distinct from the adult functions of DAF‐16 for protection from proteotoxicity. Our data also indicate that late life IIS reduction can protect from proteotoxicity when it can no longer promote longevity, strengthening the prospect that IIS reduction might be a promising strategy for the treatment of neurodegenerative disorders caused by proteotoxicity. 相似文献
18.
Yong Wang Jing Su Bo Yuan Donghe Fu Yuanjie Niu Dan Yue 《Experimental cell research》2018,362(1):11-16
Macrophages view as double agents in tumor progression. Trafficking of macrophages to the proximity of tumors is mediated by colony-stimulating factor-1 (CSF-1), a growth factor. In this study, we investigated the role of complement1q-binding protein (C1QBP)/ atypical protein kinase C ζ (PKCζ) in CSF-1-induced macrophage migration. Disruption of C1QBP expression impaired chemotaxis and adhesion of macrophage. Phosphorylation of PKCζ is an essential component in macrophage chemotaxis signaling pathway. C1QBP could interact with PKCζ in macrophage. C1QBP knockdown inhibited CSF-1 induced phosphorylation of PKCζ and integrin-β1. However, C1QBP knockdown didn’t affect the phosphorylation of PKCζ induced by MCP-1. Furthermore, CSF-1 from RCC cell condition medium promoted macrophage chemotaxis and adhesion. Taken together, our results demonstrated that C1QBP plays an essential role in CSF-1 induced migration of macrophages. 相似文献
19.
Cx43 is a widely expressed gap junction protein that mediates communication between many cell types. In general, tumor cells display less intercellular communication than their nontransformed precursors. The Src tyrosine kinase has been implicated in progression of a wide variety of cancers. Src can phosphorylate Cx43, and this event is associated with the suppression of gap junction communication. However, Src activates multiple signaling pathways that can also affect intercellular communication. For example, serine kinases including PKC and MAPK are downstream effectors of Src that can also phosphorylate Cx43 and disrupt gap junctional communication. In addition, Src can affect the expression of other proteins that may affect intercellular communication. Indeed, disruption of gap junctions by Src appears to be complex. It has become clear that Src can affect Cx43 activity by multiple mechanisms. Here, we review how Src may orchestrate events that regulate intercellular communication mediated by Cx43. 相似文献
20.
《Bioscience, biotechnology, and biochemistry》2013,77(7):1550-1560
To investigate the roles of protein kinase C (PKC) isoforms in Echinoderms, we cloned starfish cDNAs for novel, atypical, and conventional PKCs. They showed highest homology with PKCδ, ι, and α isoforms respectively. It was predicted from the whole genome sequence and by RT-PCR that sea urchin has only one isoform of each PKC subgroups. It is thus likely that these isoforms are the prototypes or ancestors of the PKC subgroups. The phylogenetic tree suggests that atypical PKC was first formed by evolution from the common prototype of AGC protein kinase family, and novel and conventional PKCs next. RT-PCR analysis indicated that novel and atypical PKC mRNAs are expressed ubiquitously in all tissues of adult starfish, whereas conventional PKC mRNA is expressed mainly in the ovary and oocytes, and only slightly in the tube foot and stomach. Upon heterologous expression, only atypical PKC was expressed in the functional form in insect cells. 相似文献