首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The molecular chaperone αB-crystallin is a small heat-shock protein that is upregulated in response to a multitude of stress stimuli, and is found colocalized with Aβ amyloid fibrils in the extracellular plaques that are characteristic of Alzheimer''s disease. We investigated whether this archetypical small heat-shock protein has the ability to interact with Aβ fibrils in vitro. We find that αB-crystallin binds to wild-type Aβ42 fibrils with micromolar affinity, and also binds to fibrils formed from the E22G Arctic mutation of Aβ42. Immunoelectron microscopy confirms that binding occurs along the entire length and ends of the fibrils. Investigations into the effect of αB-crystallin on the seeded growth of Aβ fibrils, both in solution and on the surface of a quartz crystal microbalance biosensor, reveal that the binding of αB-crystallin to seed fibrils strongly inhibits their elongation. Because the lag phase in sigmoidal fibril assembly kinetics is dominated by elongation and fragmentation rates, the chaperone mechanism identified here represents a highly effective means to inhibit fibril proliferation. Together with previous observations of αB-crystallin interaction with α-synuclein and insulin fibrils, the results suggest that this mechanism is a generic means of providing molecular chaperone protection against amyloid fibril formation.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Poliovirus (PV) is a well-characterized RNA virus, and the RNA-dependent RNA polymerase (RdRp) from PV (3Dpol) has been widely employed as an important model for understanding the structure-function relationships of RNA and DNA polymerases. Many experimental studies of the kinetics of nucleotide incorporation by RNA and DNA polymerases suggest that each nucleotide incorporation cycle basically consists of six sequential steps: (1) an incoming nucleotide binds to the polymerase-primer/template complex; (2) the ternary complex (nucleotide-polymerase-primer/template) undergoes a conformational change; (3) phosphoryl transfer occurs (the chemistry step); (4) a post-chemistry conformational change occurs; (5) pyrophosphate is released; (6) RNA or DNA translocation. Recently, the importance of structural motif D in nucleotide incorporation has been recognized, but the functions of motif D are less well explored so far. In this work, we used two computational techniques, molecular dynamics (MD) simulation and quantum mechanics (QM) method, to explore the roles of motif D in nucleotide incorporation catalyzed by PV 3Dpol. We discovered that the motif D, exhibiting high flexibility in either the presence or the absence of RNA primer/template, might facilitate the transportation of incoming nucleotide or outgoing pyrophosphate. We observed that the dynamic behavior of motif A, which should be essential to the polymerase function, was greatly affected by the motions of motif D. In the end, through QM calculations, we attempted to investigate the proton transfer in enzyme catalysis associated with a few amino acid residues of motifs F and D.  相似文献   

10.
Abasic (AP) sites are very frequent and dangerous DNA lesions. Their ability to block the advancement of a replication fork has been always viewed as a consequence of their inhibitory effect on the DNA synthetic activity of replicative DNA polymerases (DNA pols). Here we show that AP sites can also affect the strand displacement activity of the lagging strand DNA pol δ, thus preventing proper Okazaki fragment maturation. This block can be overcome through a polymerase switch, involving the combined physical and functional interaction of DNA pol β and Flap endonuclease 1. Our data identify a previously unnoticed deleterious effect of the AP site lesion on normal cell metabolism and suggest the existence of a novel repair pathway that might be important in preventing replication fork stalling.Loss of purine and pyrimidine bases is a significant source of DNA damage in prokaryotic and eukaryotic organisms. Abasic (apurinic and apyrimidinic) lesions occur spontaneously in DNA; in eukaryotes it has been estimated that about 104 depurination and 102 depyrimidation events occur per genome per day. An equally important source of abasic DNA lesions results from the action of DNA glycosylases, such as uracil glycosylase, which excises uracil arising primarily from spontaneous deamination of cytosines (1). Although most AP sites are removed by the base excision repair (BER)5 pathway, a small fraction of lesions persists, and DNA with AP lesions presents a strong block to DNA synthesis by replicative DNA polymerases (DNA pols) (2, 3). Several studies have been performed to address the effects of AP sites on the template DNA strand on the synthetic activity of a variety of DNA pols. The major replicative enzyme of eukaryotic cells, DNA pol δ, was shown to be able to bypass an AP lesion, but only in the presence of the auxiliary factor proliferating cell nuclear antigen (PCNA) and at a very reduced catalytic efficiency if compared with an undamaged DNA template (4). On the other hand, the family X DNA pols β and λ were shown to bypass an AP site but in a very mutagenic way (5). Recent genetic evidence in Saccharomyces cerevisiae cells showed that DNA pol δ is the enzyme replicating the lagging strand (6). According to the current model for Okazaki fragment synthesis (79), the action of DNA pol δ is not only critical for the extension of the newly synthesized Okazaki fragment but also for the displacement of an RNA/DNA segment of about 30 nucleotides on the pre-existing downstream Okazaki fragment to create an intermediate Flap structure that is the target for the subsequent action of the Dna2 endonuclease and the Flap endonuclease 1 (Fen-1). This process has the advantage of removing the entire RNA/DNA hybrid fragment synthesized by the DNA pol α/primase, potentially containing nucleotide misincorporations caused by the lack of a proofreading exonuclease activity of DNA pol α/primase. This results in a more accurate copy synthesized by DNA pol δ. The intrinsic strand displacement activity of DNA pol δ, in conjunction with Fen-1, PCNA, and replication protein A (RP-A), has been also proposed to be essential for the S phase-specific long patch BER pathway (10, 11). Although it is clear that an AP site on the template strand is a strong block for DNA pol δ-dependent synthesis on single-stranded DNA, the functional consequences of such a lesion on the ability of DNA pol δ to carry on strand displacement synthesis have never been investigated so far. Given the high frequency of spontaneous hydrolysis and/or cytidine deamination events, any detrimental effect of an AP site on the strand displacement activity of DNA pol δ might have important consequences both for lagging strand DNA synthesis and for long patch BER. In this work, we addressed this issue by constructing a series of synthetic gapped DNA templates with a single AP site at different positions with respect to the downstream primer to be displaced by DNA pol δ (see Fig. 1A). We show that an AP site immediately upstream of a single- to double-strand DNA junction constitutes a strong block to the strand displacement activity of DNA pol δ, even in the presence of RP-A and PCNA. Such a block could be resolved only through a “polymerase switch” involving the concerted physical and functional interaction of DNA pol β and Fen-1. The closely related DNA pol λ could only partially substitute for DNA pol β. Based on our data, we propose that stalling of a replication fork by an AP site not only is a consequence of its ability to inhibit nucleotide incorporation by the replicative DNA pols but can also stem from its effects on strand displacement during Okazaki fragment maturation. In summary, our data suggest the existence of a novel repair pathway that might be important in preventing replication fork stalling and identify a previously unnoticed deleterious effect of the AP site lesion on normal cell metabolism.Open in a separate windowFIGURE 1.An abasic site immediately upstream of a double-stranded DNA region inhibits the strand displacement activity of DNA polymerase δ. The reactions were performed as described under “Experimental Procedures.” A, schematic representation of the various DNA templates used. The size of the resulting gaps is indicated in nt. The position of the AP site on the 100-mer template strand is indicated relative to the 3′ end. Base pairs in the vicinity of the lesion are indicated by dashes. The size of the gaps (35–38 nt) is consistent with the size of ssDNA covered by a single RP-A molecule, which has to be released during Okazaki fragment synthesis when the DNA pol is approaching the 5′-end of the downstream fragment. When the AP site is covered by the downstream terminator oligonucleotide (Gap-3 and Gap-1 templates) the nucleotide placed on the opposite strand is C to mimic the situation generated by spontaneous loss of a guanine or excision of an oxidized guanine, whereas when the AP site is covered by the primer (nicked AP template), the nucleotide placed on the opposite strand is A to mimic the most frequent incorporation event occurring opposite an AP site. B, human PCNA was titrated in the presence of 15 nm (lanes 2–4 and 10–12) or 30 nm (lanes 6–8 and 14–16) recombinant human four subunit DNA pol δ, on a linear control (lanes 1–8) or a 38-nt gap control (lanes 9–16) template. Lanes 1, 5, 9, and 13, control reactions in the absence of PCNA. C, human PCNA was titrated in the presence of 60 nm DNA pol δ, on a linear AP (lanes 2–4) or 38-nt gap AP (lanes 6–9) template. Lanes 1 and 5, control reactions in the absence of PCNA.  相似文献   

11.
12.
Human polymerase kappa (hPol κ) is one of four eukaryotic Y-class DNA polymerases and may be an important element in the cellular response to polycyclic aromatic hydrocarbons such as benzo[a]pyrene, which can lead to reactive oxygenated metabolite-mediated oxidative stress. Here, we present a detailed analysis of the activity and specificity of hPol κ bypass opposite the major oxidative adduct 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG). Unlike its archaeal homolog Dpo4, hPol κ bypasses this lesion in an error-prone fashion by inserting mainly dATP. Analysis of transient-state kinetics shows diminished “bursts” for dATP:8-oxoG and dCTP:8-oxoG incorporation, indicative of non-productive complex formation, but dATP:8-oxoG insertion events that do occur are 2-fold more efficient than dCTP:G insertion events. Crystal structures of ternary hPol κ complexes with adducted template-primer DNA reveal non-productive (dGTP and dATP) alignments of incoming nucleotide and 8-oxoG. Structural limitations placed upon the hPol κ by interactions between the N-clasp and finger domains combined with stabilization of the syn-oriented template 8-oxoG through the side chain of Met-135 both appear to contribute to error-prone bypass. Mutating Leu-508 in the little finger domain of hPol κ to lysine modulates the insertion opposite 8-oxoG toward more accurate bypass, similar to previous findings with Dpo4. Our structural and activity data provide insight into important mechanistic aspects of error-prone bypass of 8-oxoG by hPol κ compared with accurate and efficient bypass of the lesion by Dpo4 and polymerase η.DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery, and various mechanisms exist to either remove the resulting lesions or bypass them in a more or less mutation-prone fashion (1). Error-prone polymerases are central to trans-lesion synthesis across sites of damaged DNA (2, 3). Four so-called Y-class DNA polymerases have been identified in humans, Pol η,4 Pol ι, Pol κ, and Rev1, which exhibit different activities and abilities to replicate past a flurry of individual lesions (4, 5). Homologs have also been identified and characterized in other organisms, notably DinB (Pol IV) in Escherichia coli (68), Dbh in Sulfolobus acidocaldarius (9, 10), and Dpo4 in Sulfolobus solfataricus (11, 12). A decade of investigations directed at the structural and functional properties of bypass polymerases have significantly improved our understanding of this class of enzymes (5, 13). A unique feature of Y-class polymerases, compared with the common right-handed arrangement of palm, thumb, and finger subdomains of high fidelity (i.e. A-class) DNA polymerases (14), is a “little finger” or “PAD” (palm-associated domain) subdomain that plays a crucial role in lesion bypass (12, 1521). In addition to the little finger subdomain at the C-terminal end of the catalytic core, both Rev1 and Pol κ exhibit an N-terminal extension that is absent in other translesion polymerases. The N-terminal extension in the structure of the ternary (human) hPol κ·DNA·dTTP complex folds into a U-shaped tether-helix-turn-helix “clasp” that is located between the thumb and little finger domains, allowing the polymerase to completely encircle the DNA (18). Although the precise role of the clasp for lesion bypass by hPol κ remains to be established, it is clear that this entity is functionally important, because mutant enzymes with partially or completely removed clasps exhibit diminished catalytic activity compared with the full-length catalytic core (hPol κ N1–526) or a core lacking the N-terminal 19 residues (hPol κ N19–526; the construct used for crystal structure determination of the ternary complex (18)).7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), found in both lower organisms and eukaryotes, is a major lesion that is a consequence of oxidative stress. The lesion is of relevance not only because of its association with cancer (22, 23), but also in connection with aging (24), hepatitis (25), and infertility (26). It is far from clear which DNA polymerases bypass 8-oxoG most often in a cellular context, but given the ubiquitous nature of the lesion it seems likely that more than one enzyme could encounter the lesion. Replicative polymerases commonly insert dATP opposite template 8-oxoG, with the lesion adopting the preferred syn conformation (e.g. 27, 28). It was recently found that the translesion polymerase Dpo4 from S. solfataricus synthesizes efficiently past 8-oxoG, inserting ≥95% dCTP > dATP opposite the lesion (29, 30). The efficient and low error bypass of the 8-oxoG lesion by Dpo4 is associated to a large extent with an arginine residue in the little finger domain (17). In the crystal structure of the ternary Dpo4·DNA·dCTP complex, the side chain of Arg-332 forms a hydrogen bond to the 8-oxygen of 8-oxoG, thus shifting the nucleoside conformational equilibrium toward the anti state and enabling a Watson-Crick binding mode with the incoming dCTP (30). The efficient and accurate replication of templates bearing 8-oxoG by yeast Pol η (31, 32) may indicate similarities between the bypass reactions catalyzed by the archaeal and eukaryotic enzymes. In contrast, bypass synthesis opposite 8-oxoG by human Pol κ is error-prone, resulting in efficient incorporation of A (3335). The inaccurate bypass of 8-oxoG is thought to contribute to the deleterious effects associated with the lesion. These observations indicate different behaviors of the eukaryotic trans-lesion Pol κ and its archaeal “homolog” Dpo4 vis-à-vis the major oxidative stress lesion 8-oxoG. A mechanistic understanding of human DNA polymerases that bypass 8-oxoG in an error-prone fashion, such as hPol κ, is therefore of great interest.To elucidate commonalities and differences between the trans-8-oxoG syntheses of S. solfataricus Dpo4, yeast Pol η, and hPol κ, we carried out a comprehensive analysis of the bypass activity for the latter with template·DNA containing the 8-oxoG lesion, including pre-steady-state and steady-state kinetics of primer extension opposite and beyond 8-oxoG and LC-MS/MS assays of full-length extension products. We determined crystal structures of ternary hPol κ-(8-oxoG)DNA-dGTP and hPol κ-(8-oxoG)DNA-dATP complexes, apparently the first for any complex with adducted DNA for the κ enzyme reported to date. Our work demonstrates clear distinctions between genetically related translesion polymerases and provides insights into the origins of the error-prone reactions opposite 8-oxoG catalyzed by Y-family DNA polymerases.  相似文献   

13.
14.
15.
16.
Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA–RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA–RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA–RNA hybrids. The optimization of the fusion enzyme’s specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation.  相似文献   

17.
Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the α-arrestin protein family; the α-arrestins are related to the classical β-arrestins and visual arrestins. Txnip is the only α-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved α-arrestin function. Here we show that wild type Txnip and Txnip C247S, a Txnip mutant that does not bind thioredoxin in vitro, both inhibit glucose uptake in mature adipocytes and in primary skin fibroblasts. Furthermore, we show that Txnip C247S does not bind thioredoxin in cells, using thiol alkylation to trap the Txnip-thioredoxin complex. Because Txnip function was independent of thioredoxin binding, we tested whether inhibition of glucose uptake was conserved in the related α-arrestins Arrdc4 and Arrdc3. Both Txnip and Arrdc4 inhibited glucose uptake and lactate output, while Arrdc3 had no effect. Structure-function analysis indicated that Txnip and Arrdc4 inhibit glucose uptake independent of the C-terminal WW-domain binding motifs, recently identified as important in yeast α-arrestins. Instead, regulation of glucose uptake was intrinsic to the arrestin domains themselves. These data demonstrate that Txnip regulates cellular metabolism independent of its binding to thioredoxin and reveal the arrestin domains as crucial structural elements in metabolic functions of α-arrestin proteins.Thioredoxin-interacting protein (Txnip),3 an inhibitor of thioredoxin disulfide reductase activity in vitro (13), is robustly induced by glucose (46) and a critical regulator of metabolism in vivo (710). In humans, Txnip expression is suppressed by insulin and strongly up-regulated in diabetes (7). Txnip-deficient mice have fasting hypoglycemia and ketosis (8, 9, 11, 12) with a striking enhancement of glucose uptake by peripheral tissues (8, 9). We have proposed that Txnip inhibits thioredoxin by forming a mixed disulfide with thioredoxin at its catalytic active site cysteines in a disulfide exchange reaction (13). However, it is not known how Txnip metabolic functions relate to its ability to bind thioredoxin.Structurally, Txnip belongs to the arrestin superfamily of proteins (14). The prototypical arrestins (the visual arrestins and the β-arrestins) are key regulators of receptor signaling. The β-arrestins, named for their interaction with the β-adrenergic receptor, are now known to control signaling through the multiple families of receptors (15). These arrestin proteins have two wing-like arrestin domains arranged around a central core that detects and binds selectively to the charged phosphates of activated receptors (16). The arrestin domains then act as multifunctional scaffolds that cannot only quench receptor signals by recruiting endocytotic machinery and ubiquitin ligases, but also start new signal cascades (15). Recently, arrestin-β2 has also been shown to play a key role in metabolism as a controller of insulin receptor signaling that is deficient in diabetes (17).In addition to the classical visual/β-arrestins, a large number of arrestins more closely related to Txnip are present throughout multicellular evolution. These proteins have been termed the “α-arrestins,” as they are of more ancient origin than the visual/β family (14). Although no structures are known of the α-arrestins to date, they appear highly likely to share the overall fold: two β-sheet sandwich arrestin domains connected by a short linker sequence (14, 18). Confidence in this prediction has been enhanced by the surprising finding that the vps26 family of proteins, even more distantly related to the classical arrestins than Txnip, also share the arrestin fold (19). The vps26 proteins are a component of the retromer complex that controls retrograde transport of recycling endosomes to the trans-Golgi network. This functional overlap with visual/β-arrestin regulation of endocytosis suggests that control of endosome formation and transport may be a conserved function of the arrestin superfamily fold.The functions of the mammalian α-arrestins remain unclear. Humans have six α-arrestins: Txnip and five other proteins, which have been assigned the names Arrdc1–5 (arrestin domain-containing 1–5) (13). Very little is known about these other α-arrestins; thioredoxin binding is not conserved beyond Txnip (13, 20). More is known in yeast: recent reports suggest that α-arrestins function in regulation of endocytosis and protein ubiquitination through PXXY motifs in their C-terminal tails (2125). However, as all the vertebrate α-arrestins have diverged from the ancestral α-arrestins (14), their structure-function relationships may differ from yeast α-arrestins.Given that other α-arrestins are not thioredoxin-binding proteins, we hypothesized that Txnip metabolic functions may be conserved in mammalian α-arrestins and independent of its interaction with thioredoxin. Overexpression of Txnip in vitro can decrease levels of available thioredoxin and increase levels of reactive oxygen species (1, 3, 26). However, in vivo studies of two different Txnip-deficient mouse models found no change in available thioredoxin levels (8, 27). Txnip reportedly binds to other proteins including Jab1 (28) and Dnajb5 (29), but it is not clear to what extent these interactions are themselves independent of a Txnip-thioredoxin complex (30).Using overexpression of a mutant Txnip that does not bind thioredoxin, we show here that a major metabolic function of Txnip, its inhibition of glucose uptake, does not require interaction with thioredoxin. Instead, we show that inhibition of glucose uptake is a conserved function of another human α-arrestin, Arrdc4. Studies of Txnip mutants and chimeric α-arrestins suggest that the metabolic functions of Txnip and Arrdc4 are intrinsic to the arrestin domains.  相似文献   

18.
19.
Two mRNA analogs, pUUCUAAA (with stop codon UAA) and pUUCUCAA (with Ser codon UCA) containing a perfluoroarylazido group at U4, were used to study the position relative to the 18S rRNA for the first nucleotide of the codon located in the A site of the human 80S ribosome. To place UAA or UCA in the A site, UCC-recognizing tRNAPhe was bound in the P site. With each analog, crosslinking was detected for highly conserved fragment 1816–1831, which contains invariant dinucleotide A1823/A1824 and is in helix 44 at the 3" end of the 18S rRNA. Since 18S rRNA modification did not depend on whether the U4 photoreactive group was in the sense or stop codon, it was assumed that polypeptide chain release factor 1 directly recognizes the trinucleotide of a stop codon located in the A site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号