首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The assembly of iron–sulfur (Fe–S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe–S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe–4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe–S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe–S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe–S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.  相似文献   

2.
Fe–S clusters are ancient, ubiquitous and highly essential prosthetic groups for numerous fundamental processes of life. The biogenesis of Fe–S clusters is a multistep process including iron acquisition, sulfur mobilization, and cluster formation. Extensive studies have provided deep insights into the mechanism of the latter two assembly steps. However, the mechanism of iron utilization during chloroplast Fe–S cluster biogenesis is still unknown. Here we identified two Arabidopsis DnaJ proteins, DJA6 and DJA5, that can bind iron through their conserved cysteine residues and facilitate iron incorporation into Fe–S clusters by interactions with the SUF (sulfur utilization factor) apparatus through their J domain. Loss of these two proteins causes severe defects in the accumulation of chloroplast Fe–S proteins, a dysfunction of photosynthesis, and a significant intracellular iron overload. Evolutionary analyses revealed that DJA6 and DJA5 are highly conserved in photosynthetic organisms ranging from cyanobacteria to higher plants and share a strong evolutionary relationship with SUFE1, SUFC, and SUFD throughout the green lineage. Thus, our work uncovers a conserved mechanism of iron utilization for chloroplast Fe–S cluster biogenesis.  相似文献   

3.
4.
Biogenesis and recycling of iron–sulfur (Fe–S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe–S clusters are assembled into apoproteins by the iron–sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe–S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe–S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe–S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.  相似文献   

5.
BlsE, a predicted radical S-adenosyl-L-methionine (SAM) protein, was anaerobically purified and reconstituted in vitro to study its function in the blasticidin S biosynthetic pathway. The putative role of BlsE was elucidated based on bioinformatics analysis, genetic inactivation and biochemical characterization. Biochemical results showed that BlsE is a SAM-dependent radical enzyme that utilizes cytosylglucuronic acid, the accumulated intermediate metabolite in blsE mutant, as substrate and catalyzes decarboxylation at the C5 position of the glucoside residue to yield cytosylarabinopyranose. Additionally, we report the purification and reconstitution of BlsE, characterization of its [4Fe–4S] cluster using UV-vis and electron paramagnetic resonance (EPR) spectroscopic analysis, and investigation of the ability of flavodoxin (Fld), flavodoxin reductase (Fpr) and NADPH to reduce the [4Fe–4S]2+ cluster. Mutagenesis studies demonstrated that Cys31, Cys35, Cys38 in the C×××C×MC motif and Gly73, Gly74, Glu75, Pro76 in the GGEP motif were crucial amino acids for BlsE activity while mutation of Met37 had little effect on its function. Our results indicate that BlsE represents a typical [4Fe–4S]-containing radical SAM enzyme and it catalyzes decarboxylation in blasticidin S biosynthesis.  相似文献   

6.
Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid–derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.  相似文献   

7.
Iron–sulfur (Fe–S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe–S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe–S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe–S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe–S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe–S supply in grxs15 mutants.  相似文献   

8.
9.
Iron is an essential trace-element for most organisms. However, because high concentration of free intracellular iron is cytotoxic, cells have developed complex regulatory networks that keep free intracellular iron concentration at optimal range, allowing the incorporation of the metal into iron-using enzymes and minimizing damage to the cell. We built a mathematical model of the network that controls iron uptake and usage in the bacterium Escherichia coli to explore the dynamics of iron flow. We simulate the effect of sudden decrease or increase in the extracellular iron level on intracellular iron distribution. Based on the results of simulations we discuss the possible roles of the small RNA RyhB and the Fe–S cluster assembly systems in the optimal redistribution of iron flows. We suggest that Fe–S cluster assembly is crucial to prevent the accumulation of toxic levels of free intracellular iron when the environment suddenly becomes iron rich.  相似文献   

10.
Iron–sulfur (Fe–S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe–S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe–S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe–S cluster biogenesis does not meet cellular demands.  相似文献   

11.
Heterodimeric 2-oxoacid:ferredoxin oxidoreductase (OFOR) from Sulfolobus tokodaii (StOFOR) has only one [4Fe–4S]2 + cluster, ligated by 4 Cys residues, C12, C15, C46, and C197. The enzyme has no other Cys. To elucidate the role of these Cys residues in holding of the iron–sulfur cluster in the course of oxidative decarboxylation of a 2-oxoacid, one or two of these Cys residues was/were substituted with Ala to yield C12A, C15A, C46A, C197A and C12/15A mutants. All the mutants showed the loss of iron–sulfur cluster, except the C197A one which retained some unidentified type of iron–sulfur cluster. On addition of pyruvate to OFOR, the wild type enzyme exhibited a chromophore at 320 nm and a stable large EPR signal corresponding to a hydroxyethyl-ThDP radical, while the mutant enzymes did not show formation of any radical intermediate or production of acetyl-CoA, suggesting that the intact [4Fe–4S] cluster is necessary for these processes. The stable radical intermediate in wild type OFOR was rapidly decomposed upon addition of CoA in the absence of an electron acceptor. Non-oxidative decarboxylation of pyruvate, yielding acetaldehyde, has been reported to require CoA for other OFORs, but StOFOR catalyzed acetaldehyde production from pyruvate independent of CoA, regardless of whether the iron–sulfur cluster is intact [4Fe–4S] type or not. A comprehensive reaction scheme for StOFOR with a single cluster was proposed.  相似文献   

12.
Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. “Plastid-type” NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron–sulfur (Fe–S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe–S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe–S clusters to lipoyl synthase.

A pair of evolutionarily conserved proteins involved in iron–sulfur cofactor assembly have a specific role in lipoate biosynthesis for mitochondrial dehydrogenases.  相似文献   

13.
The electron paramagnetic resonance (EPR) spectrum from the [4Fe–4S]3+ cluster in several high-potential iron–sulfur proteins (HiPIPs) is complex: it is not the pattern of a single, isolated S=1/2 system. Multifrequency EPR from 9 to 130 GHz reveals that the apparent peak positions (g values) are frequency-independent: the spectrum is dominated by the Zeeman interaction plus g-strain broadening. The spectra taken at frequencies above the X-band are increasingly sensitive to rapid-passage effects; therefore, the X-band data, which are slightly additionally broadened by dipolar interaction, were used for quantitative spectral analysis. For a single geometrical [4Fe–4S]3+ structure the (Fe–Fe)5+ mixed-valence dimer can be assigned in six different ways to a pair of iron ions, and this defines six valence isomers. Systematic multicomponent g-strain simulation shows that the [4Fe–4S]3+ paramagnets in seven HiPIPs from different bacteria each consist of three to four discernible species, and these are assigned to valence isomers of the clusters. This interpretation builds on previous EPR analyzes of [4Fe–4S]3+ model compounds, and it constitutes a high-resolution extension of the current literature model, proposed from paramagnetic NMR studies.  相似文献   

14.
Iron–sulfur (Fe–S) clusters are the oldest and most versatile inorganic cofactors that are required to sustain fundamental life processes. Bacteria have three systems of [Fe–S] cluster biogenesis, designated ISC, NIF, and SUF. In contrast, the Thermus thermophiles HB8 has only one system, formed mostly by SUF homologs that contain six proteins: SufA, SufB, SufC, SufD, SufS and SufE. The kinetics of SufC ATPase was studied using a linked enzyme assay method. In the presence of SufB, SufD or SufBD complexes, the activity of SufC was enhanced. The cysteine desulfurase activity of SufS was also stimulated by the presence of the SufBCD complex. The results obtained through enzymology revealed that aconitase activity was activated by [Fe–S] clusters reconstituted on the SufBCD complex. Consolidated results from spectral and enzymatic analysis suggest that the SufBCD complex is a novel type of Fe–S scaffold system that can assemble Fe/S clusters de novo.  相似文献   

15.
Experiments document the ability of two species of autotrophic methanogens to assimilate and utilize organic substrates as the nutrient sulfur or nitrogen source and as a carbon source during growth on H2-CO2. Methanobacterium thermoautotrophicum strain ΔH and the mesophilic species Methanobacterium sp. strain Ivanov grew with glutamine as the nitrogen source or cysteine as the sulfur source. M. thermoautotrophicum also utilized urea as the nitrogen source and as a carbon precursor for methane and cell synthesis. Methanobacterium sp. strain Ivanov grew with methionine as the sulfur source. The growth rate of two different Methanobacterium species was lower on an organic N or S source than on ammonium or sulfide. 35S and 14C tracer studies demonstrated that amino acid or urea assimilation correlated with time and amount of growth. The rate of [35S]cysteine incorporation was similar in strain ΔH (34 nmol h−1 mg of cells−1) and strain Ivanov (23 nmol h−1 mg of cells−1). However, the rate of [14C]acetate incorporation was dramatically different (17 versus 208 nmol h−1 mg of cells−1 in strains ΔH and Ivanov, respectively). [14C]acetate accounted for 1.3 and 21.2% of the total cell carbon synthesized by strains ΔH and Ivanov, respectively. Amino acids and urea were mainly assimilated into the cell protein fraction, but accounted for less than 2.0% of the total cell carbon synthesized. The data suggest that a biochemical-genetic approach to understanding cell carbon synthesis in methanogens is feasible; mutants that are auxotrophic for either acetate, glutamine, cysteine, or methionine are suggested as future targets for genetic studies.  相似文献   

16.
The class of [NiFe]–hydrogenases is characterized by a bimetallic cofactor comprising low–spin nickel and iron ions, the latter of which is modified with a single carbon monoxide (CO) and two cyanide (CN) molecules. Generation of these ligands in vivo requires a complex maturation apparatus in which the HypC–HypD complex acts as a ‘construction site’ for the Fe–(CN)2CO portion of the cofactor. The order of addition of the CO and CN ligands determines the ultimate structure and catalytic efficiency of the cofactor; however much debate surrounds the succession of events. Here, we present an FT–IR spectroscopic analysis of HypC–HypD isolated from a hydrogenase–competent wild–type strain of Escherichia coli. In contrast to previously reported samples, HypC–HypD showed spectral contributions indicative of an electron–rich Fe–CO cofactor, at the same time lacking any Fe–CN signatures. This immature iron site binds external CO and undergoes oxidative damage when in contact with O2. Binding of CO protects the site against loss of spectral features associated with O2 damage. Our findings strongly suggest that CO ligation precedes cyanation in vivo. Furthermore, the results provide a rationale for the deleterious effects of O2 on in vivo cofactor biosynthesis.  相似文献   

17.
Kambampati R  Lauhon CT 《Biochemistry》2003,42(4):1109-1117
Thionucleosides are uniquely present in tRNA. In many organisms, tRNA specific for Lys, Glu, and Gln contain hypermodified 2-thiouridine (s(2)U) derivatives at wobble position 34. The s(2) group of s(2)U34 stabilizes anticodon structure, confers ribosome binding ability to tRNA and improves reading frame maintenance. Earlier studies have mapped and later identified the mnmA gene (formerly asuE or trmU) as required for the s(2)U modification in Escherichia coli. We have prepared a nonpolar deletion of the mnmA gene and show that it is not required for viability in E. coli. We also cloned mnmA from E. coli, and overproduced and purified the protein. Using a gel mobility shift assay, we show that MnmA binds to unmodified E. coli tRNA(Lys) with affinity in the low micromolar range. MnmA does not bind observably to the nonsubstrate E. coli tRNA(Phe). Corroborating this, tRNA(Glu) protected MnmA from tryptic digestion. ATP also protected MnmA from trypsinolysis, suggesting the presence of an ATP binding site that is consistent with analysis of the amino acid sequence. We have reconstituted the in vitro biosynthesis of s(2)U using unmodified E. coli tRNA(Glu) as a substrate. The activity requires MnmA, Mg-ATP, l-cysteine, and the cysteine desulfurase IscS. HPLC analysis of thiolated tRNA digests using [(35)S]cysteine confirms that the product of the in vitro reaction is s(2)U. As in the case of 4-thiouridine synthesis, purified IscS-persulfide is able to provide sulfur for in vitro s(2)U synthesis in the absence of cysteine. Small RNAs that represent the anticodon stem loops for tRNA(Glu) and tRNA(Lys) are substrates of comparable activity to the full length tRNAs, indicating that the major determinants for substrate recognition are contained within this region.  相似文献   

18.
In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.  相似文献   

19.
4-Thiouridine (s4U) is a conserved modified nucleotide at position 8 of bacterial and archaeal tRNAs and plays a role in protecting cells from near-UV killing. Escherichia coli employs the following two enzymes for its synthesis: the cysteine desulfurase IscS, which forms a Cys persulfide enzyme adduct from free Cys; and ThiI, which adenylates U8 and transfers sulfur from IscS to form s4U. The C-terminal rhodanese-like domain (RLD) of ThiI is responsible for the sulfurtransferase activity. The mechanism of s4U biosynthesis in archaea is not known as many archaea lack cysteine desulfurase and an RLD of the putative ThiI. Using the methanogenic archaeon Methanococcus maripaludis, we show that deletion of ThiI (MMP1354) abolished the biosynthesis of s4U but not of thiamine. MMP1354 complements an Escherichia coli ΔthiI mutant for s4U formation, indicating that MMP1354 is sufficient for sulfur incorporation into s4U. In the absence of an RLD, MMP1354 uses Cys265 and Cys268 located in the PP-loop pyrophosphatase domain to generate persulfide and disulfide intermediates for sulfur transfer. In vitro assays suggest that S2− is a physiologically relevant sulfur donor for s4U formation catalyzed by MMP1354 (Km for Na2S is ∼1 mm). Thus, methanogenic archaea developed a strategy for sulfur incorporation into s4U that differs from bacteria; this may be an adaptation to life in sulfide-rich environments.  相似文献   

20.
The heterodisulfide reductase complex HdrABC from Acidithiobacillus ferrooxidans was suggested to own novel features that act in reverse to convert the sulfane sulfur of GS n H species (n > 1) into sulfite in sulfur oxidation. The HdrC subunit is potentially encoded by two different highly upregulated genes sharing only 29 % identity in A. ferrooxidans grown in sulfur-containing medium, which were named as HdrC1 and HdrC2, respectively and had been confirmed to contain iron–sulfur cluster by expression and characterization, especially the HdrC1 which had been showed to bind only one [4Fe–4S] cluster by mutations. However, the mutations of the HdrC2 remain to be done and the detailed binding information of it is still unclear. Here, we report the expression, mutations, and molecular modeling of the HdrC2 from A. ferrooxidans. This HdrC2 had two identical motifs (Cx2Cx2Cx3C) containing total of eight cysteine residues potentially for iron–sulfur cluster binding. This purified HdrC2 was exhibited to contain one variable cluster converted between [4Fe–4S] and [3Fe–4S] according to different conditions by the UV-scanning and EPR spectra. The site-directed mutagenesis results of these eight residues further confirmed that the HdrC2 in reduction with Fe2+ condition loaded only one [4Fe–4S]+ with spin S = 1/2 ligated by the residues of Cys73, Cys109, Cys112, and Cys115; the HdrC2 in natural aeration condition lost the Fe atom ligated by the residue of Cys73 and loaded only one [3Fe–4S]0 with spin S = 0; the HdrC2 in oxidation condition loaded only one [3Fe–4S]+ with spin S = 1/2. Molecular modeling results were also in line with the experiment results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号