首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Erler JT  Linding R 《Cell》2012,149(4):731-733
Drug development for complex diseases is shifting from targeting individual proteins or genes to systems-based attacks targeting dynamic network states. Lee et al. now reveal how the progressive rewiring of a signaling network over time following EGF receptor inhibition leaves triple-negative breast tumors vulnerable to a second, later hit with DNA-damaging drugs, demonstrating that time- and order-dependent drug combinations can be more efficacious in killing cancer cells.  相似文献   

2.
JH Lee  DG Kim  TJ Bae  K Rho  JT Kim  JJ Lee  Y Jang  BC Kim  KM Park  S Kim 《PloS one》2012,7(8):e42573

Background

Anticancer therapies that target single signal transduction pathways often fail to prevent proliferation of cancer cells because of overlapping functions and cross-talk between different signaling pathways. Recent research has identified that balanced multi-component therapies might be more efficacious than highly specific single component therapies in certain cases. Ideally, synergistic combinations can provide 1) increased efficacy of the therapeutic effect 2) reduced toxicity as a result of decreased dosage providing equivalent or increased efficacy 3) the avoidance or delayed onset of drug resistance. Therefore, the interest in combinatorial drug discovery based on systems-oriented approaches has been increasing steadily in recent years.

Methodology

Here we describe the development of Combinatorial Drug Assembler (CDA), a genomics and bioinformatics system, whereby using gene expression profiling, multiple signaling pathways are targeted for combinatorial drug discovery. CDA performs expression pattern matching of signaling pathway components to compare genes expressed in an input cell line (or patient sample data), with expression patterns in cell lines treated with different small molecules. Then it detects best pattern matching combinatorial drug pairs across the input gene set-related signaling pathways to detect where gene expression patterns overlap and those predicted drug pairs could likely be applied as combination therapy. We carried out in vitro validations on non-small cell lung cancer cells and triple-negative breast cancer (TNBC) cells. We found two combinatorial drug pairs that showed synergistic effect on lung cancer cells. Furthermore, we also observed that halofantrine and vinblastine were synergistic on TNBC cells.

Conclusions

CDA provides a new way for rational drug combination. Together with phExplorer, CDA also provides functional insights into combinatorial drugs. CDA is freely available at http://cda.i-pharm.org.  相似文献   

3.
A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases.  相似文献   

4.
Genetic rearrangements involving the anaplastic lymphoma kinase (ALK) gene create oncogenic drivers for several cancers, including malignant peritoneal mesothelioma (MPeM). Here, we report genomic and functional precision oncology profiling on a rare case of a 5-year old patient diagnosed with wide-spread and aggressive MPeM, driven by STRN-ALK rearrangement. We established genomically representative patient-derived cancer cells (PDCs) from the tumor sample and performed high-throughput drug sensitivity testing with 527 oncology compounds to identify potent inhibitors. As expected, the PDCs were overall sensitive to the ALK inhibitors, although the eight different inhibitors tested had variable efficacy. We also discovered other effective inhibitors, such as MEK/ERK inhibitors and those targeting pathways downstream of ALK as well as Bcl-xl inhibitors. In contrast, most cytotoxic drugs were not very effective. ALK inhibitors synergized with MEK and PI3K/mTOR inhibitors, highlighting potential combinatorial strategies to enhance drug efficacy and tackle drug resistance. Based on genomic data and associated functional validation, the patient was treated with the ALK inhibitor crizotinib in combination with conventional chemotherapy (cisplatin and gemcitabine). A complete disease remission was reached, lasting now for over 3 years. Our results illustrate a rare pediatric cancer case, and highlight the potential of functional precision oncology to discover pathogenetic drivers, validate dependency on driver signals, compare different inhibitors against each other and potentially enhance targeted treatments by drug combinations. Such real-time implementation of functional precision oncology could pave the way towards safer and more effective personalized cancer therapies for individual pediatric cancer patients with rare tumors.  相似文献   

5.
Xiong J  Liu J  Rayner S  Tian Z  Li Y  Chen S 《PloS one》2010,5(11):e13937
The high rates of failure in oncology drug clinical trials highlight the problems of using pre-clinical data to predict the clinical effects of drugs. Patient population heterogeneity and unpredictable physiology complicate pre-clinical cancer modeling efforts. We hypothesize that gene networks associated with cancer outcome in heterogeneous patient populations could serve as a reference for identifying drug effects. Here we propose a novel in vivo genetic interaction which we call 'synergistic outcome determination' (SOD), a concept similar to 'Synthetic Lethality'. SOD is defined as the synergy of a gene pair with respect to cancer patients' outcome, whose correlation with outcome is due to cooperative, rather than independent, contributions of genes. The method combines microarray gene expression data with cancer prognostic information to identify synergistic gene-gene interactions that are then used to construct interaction networks based on gene modules (a group of genes which share similar function). In this way, we identified a cluster of important epigenetically regulated gene modules. By projecting drug sensitivity-associated genes on to the cancer-specific inter-module network, we defined a perturbation index for each drug based upon its characteristic perturbation pattern on the inter-module network. Finally, by calculating this index for compounds in the NCI Standard Agent Database, we significantly discriminated successful drugs from a broad set of test compounds, and further revealed the mechanisms of drug combinations. Thus, prognosis-guided synergistic gene-gene interaction networks could serve as an efficient in silico tool for pre-clinical drug prioritization and rational design of combinatorial therapies.  相似文献   

6.
The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 14 cancer subtypes and identified 461 genes that were amplified in two or more datasets. The list was narrowed to 73 cancer-associated genes with potential “druggable” properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 40 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 40 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapter GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer drug targets and we further discuss potential novel opportunities for drug discovery efforts.  相似文献   

7.

Background

Drug combination therapy, which is considered as an alternative to single drug therapy, can potentially reduce resistance and toxicity, and have synergistic efficacy. As drug combination therapies are widely used in the clinic for hypertension, asthma, and AIDS, they have also been proposed for the treatment of cancer. However, it is difficult to select and experimentally evaluate effective combinations because not only is the number of cancer drug combinations extremely large but also the effectiveness of drug combinations varies depending on the genetic variation of cancer patients. A computational approach that prioritizes the best drug combinations considering the genetic information of a cancer patient is necessary to reduce the search space.

Results

We propose an in-silico method for personalized drug combination therapy discovery. We predict the synergy between two drugs and a cell line using genomic information, targets of drugs, and pharmacological information. We calculate and predict the synergy scores of 583 drug combinations for 31 cancer cell lines. For feature dimension reduction, we select the mutations or expression levels of the genes in cancer-related pathways. We also used various machine learning models. Extremely Randomized Trees (ERT), a tree-based ensemble model, achieved the best performance in the synergy score prediction regression task. The correlation coefficient between the synergy scores predicted by ERT and the actual observations is 0.738. To compare with an existing drug combination synergy classification model, we reformulate the problem as a binary classification problem by thresholding the synergy scores. ERT achieved an F1 score of 0.954 when synergy scores of 20 and -20 were used as the threshold, which is 8.7% higher than that obtained by the state-of-the-art baseline model. Moreover, the model correctly predicts the most synergistic combination, from approximately 100 candidate drug combinations, as the top choice for 15 out of the 31 cell lines. For 28 out of the 31 cell lines, the model predicts the most synergistic combination in the top 10 of approximately 100 candidate drug combinations. Finally, we analyze the results, generate synergistic rules using the features, and validate the rules through the literature survey.

Conclusion

Using various types of genomic information of cancer cell lines, targets of drugs, and pharmacological information, a drug combination synergy prediction pipeline is proposed. The pipeline regresses the synergy level between two drugs and a cell line as well as classifies if there exists synergy or antagonism between them. Discovering new drug combinations by our pipeline may improve personalized cancer therapy.
  相似文献   

8.
Xu Y  Duanmu H  Chang Z  Zhang S  Li Z  Li Z  Liu Y  Li K  Qiu F  Li X 《Molecular biology reports》2012,39(2):1627-1637
Copy number variations (CNVs) are one type of the human genetic variations and are pervasive in the human genome. It has been confirmed that they can play a causal role in complex diseases. Previous studies of CNVs focused more on identifying the disease-specific CNV regions or candidate genes on these CNV regions, but less on the synergistic actions between genes on CNV regions and other genes. Our research combined the CNVs with related gene co-expression to reconstruct gene co-expression network by using single nucleotide polymorphism microarray datasets and gene microarray datasets of breast cancer, and then extracted the modules which connected densely inside and analyzed the functions of modules. Interestingly, all of these modules’ functions were related to breast cancer according to our enrichment analysis, and most of the genes in these modules have been reported to be involved in breast cancer. Our findings suggested that integrating CNVs and gene co-expressed relations was an available way to analyze the roles of CNV genes and their synergistic genes in breast cancer, and provided a novel insight into the pathological mechanism of breast cancer.  相似文献   

9.
10.
Over the past decade, whole genome sequencing and other 'omics' technologies have defined pathogenic driver mutations to which tumor cells are addicted. Such addictions, synthetic lethalities and other tumor vulnerabilities have yielded novel targets for a new generation of cancer drugs to treat discrete, genetically defined patient subgroups. This personalized cancer medicine strategy could eventually replace the conventional one-size-fits-all cytotoxic chemotherapy approach. However, the extraordinary intratumor genetic heterogeneity in cancers revealed by deep sequencing explains why de novo and acquired resistance arise with molecularly targeted drugs and cytotoxic chemotherapy, limiting their utility. One solution to the enduring challenge of polygenic cancer drug resistance is rational combinatorial targeted therapy.  相似文献   

11.
The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer, 32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase in efficiency in drug discovery and development, and has potential application for the personalized medicine.  相似文献   

12.
13.

Background

Many mathematical and statistical models and algorithms have been proposed to do biomarker identification in recent years. However, the biomarkers inferred from different datasets suffer a lack of reproducibilities due to the heterogeneity of the data generated from different platforms or laboratories. This motivates us to develop robust biomarker identification methods by integrating multiple datasets.

Methods

In this paper, we developed an integrative method for classification based on logistic regression. Different constant terms are set in the logistic regression model to measure the heterogeneity of the samples. By minimizing the differences of the constant terms within the same dataset, both the homogeneity within the same dataset and the heterogeneity in multiple datasets can be kept. The model is formulated as an optimization problem with a network penalty measuring the differences of the constant terms. The L1 penalty, elastic penalty and network related penalties are added to the objective function for the biomarker discovery purpose. Algorithms based on proximal Newton method are proposed to solve the optimization problem.

Results

We first applied the proposed method to the simulated datasets. Both the AUC of the prediction and the biomarker identification accuracy are improved. We then applied the method to two breast cancer gene expression datasets. By integrating both datasets, the prediction AUC is improved over directly merging the datasets and MetaLasso. And it’s comparable to the best AUC when doing biomarker identification in an individual dataset. The identified biomarkers using network related penalty for variables were further analyzed. Meaningful subnetworks enriched by breast cancer were identified.

Conclusion

A network-based integrative logistic regression model is proposed in the paper. It improves both the prediction and biomarker identification accuracy.
  相似文献   

14.
15.
Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients.  相似文献   

16.
A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk with Restart algorithm in a protein-protein interaction network. We applied the method in >300 tumor genomes in two large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes in NGS data.  相似文献   

17.
Since genetic alteration only accounts for 20%–30% in the drug effect-related factors, the role of epigenetic regulation mechanisms in drug response is gradually being valued. However, how epigenetic changes and abnormal gene expression affect the chemotherapy response remains unclear. Therefore, we constructed a variety of mathematical models based on the integrated DNA methylation, gene expression, and anticancer drug response data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is associated with drug response and then to assess the impact of epigenetic regulation of gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical models lies in: Linear regression model is followed by logistic regression model, which greatly shortens the calculation time and ensures the reliability of results by considering the covariates. Second, reconstruction of prediction models based on multiple dataset partition methods not only evaluates the model stability but also optimizes the drug-gene pairs. For 368,520 drug-gene pairs with P < 0.05 in linear models, 999 candidate pairs with both AUC ≥ 0.8 and P < 0.05 were obtained by logistic regression models between drug response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes were optimized by model stability assessment. Integrating both DNA methylation and gene expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR, MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs’ responses. In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic regulation of DNA methylation and gene expression affect anticancer drug response.  相似文献   

18.
BackgroundAlthough the breast cancer mortality has slowed down from 2008 to 2017, breast cancer incidence rate continues to rise and thus, new and/or improved treatments are highly needed. Among them, oncolytic virotherapy which has the ability of facilitating the antitumor adaptive immunity, appears as a promising anticancer therapy. Oncolytic measles virus (MV) is particularly suitable for targeting breast cancer due to the upregulation of MV's receptor nectin-4. Nonetheless, with limited clinical success currently, ways of boosting MV-induced breast cancer oncolysis are therefore necessary. Oncolytic virotherapy alone and combined with chemotherapeutic drugs are two strategic areas with intensive development for the search of anticancer drugs. Considering that baicalein (BAI) and cinnamaldehyde (CIN) have demonstrated antitumor properties against multiple cancers including breast cancer, they could be good partners for MV-based oncolytic virotherapy.PurposeTo assess the in vitro effect of BAI and CIN with MV and assess their combination effects.MethodsWe examined the combinatorial cytotoxic effect of oncolytic MV and BAI or CIN on MCF-7 breast cancer cells. Potential anti-MV activities of the phytochemicals were first investigated in vitro to determine the optimal combination model. Synergism of MV and BAI or CIN was then evaluated in vitro by calculating the combination indices. Finally, cell cycle analysis and apoptosis assays were performed to confirm the mechanism of synergism.ResultsOverall, the viral sensitization combination modality using oncolytic MV to first infect MCF-7 breast cancer cells followed by drug treatment with BAI or CIN was found to produce significantly enhanced tumor killing. Further mechanistic studies showed that the combinations ‘MV-BAI’ and ‘MV-CIN’ display synergistic anti-breast cancer effect, mediated by elevated apoptosis.ConclusionWe demonstrated, for the first time, effective combination of oncolytic MV with BAI or CIN that could be further explored and potentially developed into novel therapeutic strategies targeting nectin-4-marked breast cancer cells.  相似文献   

19.
The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc.) and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.  相似文献   

20.
Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model's utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号