首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of extracellular vesicles (EVs) is a rapidly evolving field, owing in large part to recent advances in the realization of their significant contributions to normal physiology and disease. Once discredited as cell debris, these membrane vesicles have now emerged as mediators of intercellular communication by interaction with target cells, drug and gene delivery, and as potentially versatile platforms of clinical biomarkers as a result of their distinctive protein, nucleic acid and lipid cargoes. While there are multiple classes of EVs released from almost all cell types, here we focus primarily on the biogenesis, fate and functional cargoes of microvesicles (MVs). MVs regulate many important cellular processes including facilitating cell invasion, cell growth, evasion of immune response, stimulating angiogenesis, drug resistance and many others.   相似文献   

2.
Virtually all cells release various types of vesicles into the extracellular environment. These extracellular vesicles (EVs) transport molecular cargoes, performing as communicants for information exchange both within the tumor microenvironment (TME) and to distant organs. Thus, understanding the selective packaging of EV cargoes and the mechanistic impact of those cargoes - including metabolites, lipids, proteins, and/or nucleic acids - offers an opportunity to increase our knowledge of cancer biology and identify EV cargoes that might serve as cancer biomarkers in blood, saliva, or urine samples. In this review, we collect and organize recent advances in this field with an emphasis on pancreatic cancer (pancreatic adenocarcinoma, PDAC) and the concept that cells selectively package cargo into EVs. These studies demonstrate PDAC EV cargoes signal to reprogram and remodel the TME and impact distant organs. EV cargoes identified as potential PDAC diagnostic and prognostic biomarkers are summarized.  相似文献   

3.
Patient-derived xenografted (PDX) models were generated through the transplantation of primary acute lymphoblastic leukemia (ALL) cells into immunodeficient NSG mice. We observed that ALL cells from mouse bone marrow (BM) produced extracellular vesicles (EVs) with specific expression of inducible heat shock protein HSP70, which is commonly activated in cancer cells. Taking advantage of this specific expression, we designed a strategy to generate fluorescent HSP70-labeled ALL EVs and monitor the impact of these EVs on endogenous murine BM cells ex vivo and in vivo. We discovered that hematopoietic stem and progenitor cells (HSPC) were mainly targeted by ALL EVs, affecting their quiescence and maintenance in the murine BM environment. Investigations revealed that ALL EVs were enriched in cholesterol and other metabolites that contribute to promote the mitochondrial function in targeted HSPC. Furthermore, using CD34+ cells isolated from cord blood, we confirmed that ALL EVs can modify quiescence of human HSPC. In conclusion, we have discovered a new oncogenic mechanism illustrating how EVs produced by proliferative ALL cells can target and compromise a healthy hematopoiesis system during leukemia development.Subject terms: Acute lymphocytic leukaemia, Cancer models, Cancer metabolism  相似文献   

4.
5.
Various types of cancer pose a notable threat to human health globally. To date, many researchers have undertaken the search for anticancer therapies. However, many anticancer therapeutic approaches accompany many undesirable hazards. In this respect, extracellular vesicles as a whole gained excessive attention from the research community owing to their remarkable potential for delivery of anticancer agents since they are involved in distal intercellular communication via biological cargoes. With the discovery of the fact that tumor cells discharge huge quantities of EVs, new insights have been developed in cancer diagnosis and treatment. Tumor-derived extracellular vesicles (TD-EVs) can be distinguished from the normal cell-derived EVs due to the presence of specific labels on their surface. TD-EVs carry specific oncogenic proteins and the nucleic acids on their surface membrane that participate in tumor progression. Moreover, the proportion of these nucleic acids and the protein greatly varies among malignant and healthy cell-derived EVs. The diagnostic potential of TD-EVs can be implied for the more precise and early-stage detection of cancer that was impossible in the past. This review examines the recent progress in prognostic, diagnostic, and therapeutic potential of the EVs derived from the tumor cells.  相似文献   

6.
Mitochondria play a central role in stem cell homeostasis. Reversible switching between aerobic and anaerobic metabolism is critical for stem cell quiescence, multipotency, and differentiation, as well as for cell reprogramming. However, the effect of mitochondrial dysfunction on neural stem cell (NSC) function is unstudied. We have generated an animal model with homozygous deletion of the succinate dehydrogenase subunit D gene restricted to cells of glial fibrillary acidic protein lineage (hGFAP-SDHD mouse). Genetic mitochondrial damage did not alter the generation, maintenance, or multipotency of glia-like central NSCs. However, differentiation to neurons and oligodendrocytes (but not to astrocytes) was impaired and, hence, hGFAP-SDHD mice showed extensive brain atrophy. Peripheral neuronal populations were normal in hGFAP-SDHD mice, thus highlighting their non-glial (non hGFAP+) lineage. An exception to this was the carotid body, an arterial chemoreceptor organ atrophied in hGFAP-SDHD mice. The carotid body contains glia-like adult stem cells, which, as for brain NSCs, are resistant to genetic mitochondrial damage.  相似文献   

7.
8.
Cancer-derived extracellular vesicles (EVs) have emerged as important mediators of tumour-host interactions, and they have been shown to exert various functional effects in immune cells. In most of the studies on human immune cells, EVs have been isolated from cancer cell culture medium or patients' body fluids and added to the immune cell cultures. In such a setting, the physiological relevance of the chosen EV concentration is unknown and the EV isolation method and the timing of EV administration may bias the results. In the current study we aimed to develop an experimental cell culture model to study EV-mediated effects in human T and B cells at conditions mimicking the tumour microenvironment. We constructed a human prostate cancer cell line PC3 producing GFP-tagged EVs (PC3-CD63-GFP cells) and developed a 3D heterotypic spheroid model composed of PC3-CD63-GFP cells and human peripheral blood mononuclear cells (PBMCs). The transfer of GFP-tagged EVs from PC3-CD63-GFP cells to the lymphocytes was analysed by flow cytometry and fluorescence imaging. The endocytic pathway was investigated using three endocytosis inhibitors. Our results showed that GFP-tagged EVs interacted with a large fraction of B cells, however, the majority of EVs were not internalised by B cells but rather remained bound at the cell surface. T cell subsets differed in their ability to interact with the EVs - 15.7–24.1% of the total CD3+ T cell population interacted with GFP-tagged EVs, while only 0.3–5.8% of CD8+ T were GFP positive. Furthermore, a fraction of EVs were internalised in CD3+ T cells via macropinocytosis. Taken together, the heterotypic PC3-CD63-GFP and PBMC spheroid model provides the opportunity to study the interactions and functional effects of cancer-derived EVs in human immune cells at conditions mimicking the tumour microenvironment.  相似文献   

9.
The cystine-glutamate antiporter, xCT, supports a glutathione synthesis program enabling cancer cells to cope with metabolically stressful microenvironments. Up-regulated xCT, in combination with glutaminolysis, leads to increased extracellular glutamate, which promotes invasive behavior by activating metabotropic glutamate receptor 3 (mGluR3). Here we show that activation of mGluR3 in breast cancer cells activates Rab27-dependent release of extracellular vesicles (EVs), which can transfer invasive characteristics to “recipient” tumor cells. These EVs contain mitochondrial DNA (mtDNA), which is packaged via a PINK1-dependent mechanism. We highlight mtDNA as a key EV cargo necessary and sufficient for intercellular transfer of invasive behavior by activating Toll-like receptor 9 in recipient cells, and this involves increased endosomal trafficking of pro-invasive receptors. We propose that an EV-mediated mechanism, through which altered cellular metabolism in one cell influences endosomal trafficking in other cells, is key to generation and dissemination of pro-invasive microenvironments during mammary carcinoma progression.  相似文献   

10.
The tumor microenvironment modulates cancer growth. Extracellular vesicles (EVs) have been identified as key mediators of intercellular communication, but their role in tumor growth is largely unexplored. Here, we demonstrate that EVs from sarcoma patients promote neoangiogenesis via a purinergic X receptor 4 (P2XR4) -dependent mechanism in vitro and in vivo. Using a proteomic approach, we analyzed the protein content of plasma EVs and identified critical activated pathways in human umbilical vein endothelial cells (HUVECs) and human progenitor hematopoietic cells (CD34+). We then showed that vessel formation was due to rapid mitochondrial activation, intracellular Ca2+ mobilization, increased extracellular ATP, and trafficking of the lysosomal P2XR4 to the cell membrane, which is required for cell motility and formation of stable branching vascular networks. Cell membrane translocation of P2XR4 was induced by proteins and chemokines contained in EVs (e.g. Del-1 and SDF-1). Del-1 was found expressed in many EVs from sarcoma tumors and several tumor types. P2XR4 blockade reduced EVs-induced vessels in angioreactors, as well as intratumor vascularization in mouse xenografts. Together, these findings identify P2XR4 as a key mediator of EVs-induced tumor angiogenesis via a signaling mediated by mitochondria-lysosome-sensing response in endothelial cells, and indicate a novel target for therapeutic interventions.Subject terms: Cancer microenvironment, Cell polarity  相似文献   

11.
The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus‐end‐out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E‐cadherin, a cell adhesion molecule, localizes to these NSC‐neuropil junctions. Msps and a plus‐end directed motor protein Kinesin‐2 promote NSC cell cycle re‐entry and target E‐cadherin to NSC‐neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps‐Kinesin‐2 pathway that governs NSC reactivation, in part, by targeting E‐cad to NSC‐neuropil contact sites.  相似文献   

12.
《Reproductive biology》2022,22(2):100645
Extracellular vesicles (EVs) are small, nanometre sized, membrane-enclosed structures released by cells and are thought to be crucial in cellular communication. The cargo of these vesicles includes lipids, proteins, RNAs and DNA, and control various biological processes in their target tissues depending on the parental and receiver cell’s origin and phenotype. Recently data has accumulated in the role of EVs in embryo implantation and pregnancy, with EVs identified in the uterine cavity of women, sheep, cows, horses, and mice, in which they aid blastocyst and endometrial preparation for implantation. Herein is a critical review to decipher the role of extracellular vesicles in endometrial receptivity and their potential in reproductive therapies and diagnosis. The current knowledge of the function of embryo and endometrial derived EVs and their cargoes, with regards to their effect on implantation and receptivity are summarized and evaluated. The findings of the below review highlight that the combined knowledge on EVs deriving from the endometrium and embryo have the potential to be translated to various clinical applications including treatment, a diagnostic biomarker for diseases and a drug delivery tool to ultimately improve pregnancy rates.  相似文献   

13.
Dopamine signaling has numerous roles during brain development. In addition, alterations in dopamine signaling may be also involved in the pathophysiology of psychiatric disorders. Neurodevelopment is modulated in multiple steps by reactive oxygen species (ROS), byproducts of oxidative metabolism that are signaling factors involved in proliferation, differentiation, and migration. Hexokinase (HK), when associated with the mitochondria (mt-HK), is a potent modulator of the generation of mitochondrial ROS in the brain. In the present study, we investigated whether dopamine could affect both the activity and redox function of mt-HK in human neural progenitor cells (NPCs). We found that dopamine signaling via D1R decreases mt-HK activity and impairs ROS modulation, which is followed by an expressive release of H2O2 and impairment in calcium handling by the mitochondria. Nevertheless, mitochondrial respiration is not affected, suggesting specificity for dopamine on mt-HK function. In neural stem cells (NSCs) derived from induced-pluripotent stem cells (iPSCs) of schizophrenia patients, mt-HK is unable to decrease mitochondrial ROS, in contrast with NSCs derived from healthy individuals. Our data point to mitochondrial hexokinase as a novel target of dopaminergic signaling, as well as a redox modulator in human neural progenitor cells, which may be relevant to the pathophysiology of neurodevelopmental disorders such as schizophrenia.  相似文献   

14.
15.
Neural stem/progenitor cells (NSCs) have the capacity for self-renewal and differentiation into major classes of central nervous system cell types, such as neurons, astrocytes, and oligodendrocytes. The determination of fate of NSCs appears to be regulated by both intrinsic and extrinsic factors. Mounting evidence has shown that extracellular matrix molecules contribute to NSC proliferation and differentiation as extrinsic factors. Here we explore the effects of the epidermal growth factor-like (EGFL) and fibronectin type III homologous domains 6-8 (FN6-8) of the extracellular matrix molecule tenascin-R on NSC proliferation and differentiation. Our results show that domain FN6-8 inhibited NSC proliferation and promoted NSCs differentiation into astrocytes and less into oligodendrocytes or neurons. The EGFL domain did not affect NSC proliferation, but promoted NSC differentiation into neurons and reduced NSC differentiation into astrocytes and oligodendrocytes. Treatment of NSCs with beta 1 integrin function-blocking antibody resulted in attenuation of inhibition of the effect of FN6-8 on NSC proliferation. The influence of EGFL or FN6-8 on NSCs differentiation was inhibited by beta 1 integrin antibody application, implicating beta 1 integrin in proliferation and differentiation induced by EGFL and FN6-8 mediated triggering of NSCs.  相似文献   

16.
Extracellular vesicles (EVs) including exosomes and microvesicles are lipid bilayer‐encapsulated nanoparticles released by cells, ranging from 40 nm to several microns in diameter. Biological cargoes including proteins, RNAs, and DNAs can be ferried by EVs to neighboring and distant cells via biofluids, serving as a means of cell‐to‐cell communication under normal and pathological conditions, especially cancers. On the other hand, EVs have been investigated as a novel “information capsule” for early disease detection and monitoring via liquid biopsy. This review summarizes current advancements in EV subtype characterization, cancer EV capture, proteomic analysis technologies, as well as possible EV‐based multiomics for cancer diagnostics.  相似文献   

17.
18.
Although neurogenesis occurs in restricted regions of the adult mammalian brain, neural stem cells (NSCs) produce very few neurons during ageing or after injury. We have recently discovered that the endogenous bile acid tauroursodeoxycholic acid (TUDCA), a strong inhibitor of mitochondrial apoptosis and a neuroprotective in animal models of neurodegenerative disorders, also enhances NSC proliferation, self-renewal, and neuronal conversion by improving mitochondrial integrity and function of NSCs. In the present study, we explore the effect of TUDCA on regulation of NSC fate in neurogenic niches, the subventricular zone (SVZ) of the lateral ventricles and the hippocampal dentate gyrus (DG), using rat postnatal neurospheres and adult rats exposed to the bile acid. TUDCA significantly induced NSC proliferation, self-renewal, and neural differentiation in the SVZ, without affecting DG-derived NSCs. More importantly, expression levels of mitochondrial biogenesis-related proteins and mitochondrial antioxidant responses were significantly increased by TUDCA in SVZ-derived NSCs. Finally, intracerebroventricular administration of TUDCA in adult rats markedly enhanced both NSC proliferation and early differentiation in SVZ regions, corroborating in vitro data. Collectively, our results highlight a potential novel role for TUDCA in neurologic disorders associated with SVZ niche deterioration and impaired neurogenesis.  相似文献   

19.
Xiao Z  Kong Y  Yang S  Li M  Wen J  Li L 《Cell research》2007,17(1):73-79
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.  相似文献   

20.
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis.The processis regulated by NSC niche including neighbor cells such as vascular and glial cells.Since both vascular and glial cellssecrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF),we assessed the effect ofVEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonicstem cells.VEGF alone did not have any significant effect.When bFGF was added,however,VEGF stimulated NSCproliferation in a dose-dependent manner,and this stimulation was inhibited by ZM323881,a VEGF receptor (Flk-1)-specific inhibitor.Interestingly,ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF,suggestingthat VEGF autocrine plays a role in the proliferation of NSCs.The stimulatory effect of VEGF on NSC proliferationdepends on bFGF,which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphoryla-tion of ERK1/2.Collectively,this study may provide insight into the mechanisms by which mieroenvironmental nichesignals regulate NSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号