首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer''s disease (AD) is a type of progressive dementia caused by degeneration of the nervous system. A single target drug usually does not work well. Therefore, multi-target drugs are designed and developed so that one drug can specifically bind to multiple targets to ensure clinical effectiveness and reduce toxicity. We synthesised a series of 2-arylbenzofuran derivatives and evaluated their in vitro activities. 2-Arylbenzofuran compounds have good dual cholinesterase inhibitory activity and β-secretase inhibitory activity. The IC50 value of compound 20 against acetylcholinesterase inhibition (0.086 ± 0.01 µmol·L−1) is similar to donepezil (0.085 ± 0.01 µmol·L−1) and is better than baicalein (0.404 ± 0.04 µmol·L−1). And most of the compounds have good BACE1 inhibitory activity, of which 3 compounds (8, 19 and 20) show better activity than baicalein (0.087 ± 0.03 µmol·L−1). According to experimental results, 2-arylbenzofuran compounds provide an idea for drug design to develop prevention and treatment for AD.  相似文献   

2.

Background

Several studies on the association of TNF-alpha (−308 G/A), IL-6 (−174 G/C) and IL-1beta (−511 C/T) polymorphisms with polycystic ovary syndrome (PCOS) risk have reported conflicting results. The aim of the present study was to assess these associations by meta-analysis.

Results

A total of 14 eligible articles (1665 cases/1687 controls) were included in this meta-analysis. The results suggested that there was no obvious association between the TNF-alpha (−308 G/A) polymorphism and PCOS in the overall population or subgroup analysis by ethnicity, Hardy–Weinberg equilibrium (HWE) in controls, genotyping method, PCOS diagnosis criteria, and study sample size. Also, no obvious association was found between the TNF-alpha (−308 G/A) polymorphism and obesity in patients with PCOS (body mass index [BMI] ≥ 25 kg/m2 vs. BMI < 25 kg/m2). Regarding the IL-6 (−174 G/C) polymorphism, also no association was found in the overall population in heterozygote comparison, dominant model, and recessive model. Even though an allelic model (odds ratio [OR] = 0.63, 95% confidence interval [CI] = 0.41–0.96) and a homozygote comparison (OR = 0.52, 95% CI = 0.30–0.93) showed that the IL-6 (−174 G/C) polymorphism was marginally associated with PCOS. Further subgroup analysis suggested that the effect size was not significant among HWE in controls (sample size ≤ 200) and genotyping method of pyrosequencing under all genetic models. Similarly, there was no association between the IL-1beta (−511 C/T) polymorphism and PCOS in the overall population or subgroup analysis under all genetic models. Furthermore, no significant association was found between the IL-1beta (−511 C/T) polymorphism and several clinical and biochemical parameters in patients with PCOS.

Conclusions

The results of this meta-analysis suggest that the TNF-alpha (−308 G/A), IL-6 (−174 G/C), and IL-1beta (−511 C/T) polymorphisms may not be associated with PCOS risk. However, further case–control studies with larger sample sizes are needed to confirm our results.

Electronic supplementary material

The online version of this article (doi:10.1186/s12863-015-0165-4) contains supplementary material, which is available to authorized users.  相似文献   

3.
Twenty genotypes of Jatropha collected from diverse eco-geographic regions from the states of Chhattisgarh (3), Andhra Pradesh (12), Rajasthan (4) and Uttarakhand (1) of India were subjected to elevated CO2 conditions. All the genotypes showed significant difference (p < 0.05 and 0.01) in the phenotypic traits in both the environments (elevated and ambient) and genotype x environment interaction. Among the physiological traits recorded, maximum photosynthetic rate was observed in IC565048 (48.8 μmol m−2 s−1) under ambient controlled conditions while under elevated conditions maximum photosynthetic rate was observed in IC544678 (41.3 μmol m−2 s−1), and there was no significant difference in the genotype x environment interaction. Stomatal conductance (Gs) emerged as the key factor as it recorded significant difference among the genotypes, between the environments and also genotype x environment interaction. The Gs and transpiration (E) recorded a significant decline in the genotypes under the elevated CO2 condition over the ambient control. Under elevated CO2 conditions, the minimum values recorded for Gs and E were 0.03 mmol m−2 s−1 and 0.59 mmol m−2 s−1 respectively in accession IC565039, while the maximum values for Gs and E were 1.8 mmol m−2 s−1 and 11.5 mmol m−2 s−1 as recorded in accession IC544678. The study resulted in the identification of potential climate ready genotypes viz. IC471314, IC544654, IC541634, IC544313, and IC471333 for future use.  相似文献   

4.
Drainage has turned 650,000 km2 of peatlands worldwide into greenhouse gas sources. To counteract climate change, large‐scale rewetting is necessary while agricultural use of rewetted areas, termed paludiculture, is still possible. However, more information is required on the performance of suitable species, such as cattail, in the range of environmental conditions after rewetting. We investigated productivity and biomass quality (morphological traits and tissue chemical composition) of Typha angustifolia and Typha latifolia along gradients of water table depth (−45 to +40 cm) and nutrient addition (3.6–400 kg N ha−1 a−1) in a six‐month mesocosm experiment with an emphasis on their high‐value utilization, e.g., as building material, paper, or biodegradable packaging. Over a wide range of investigated conditions, T. latifolia was more productive than T. angustifolia. Productivity was remarkably tolerant of low nutrient addition, suggesting that long‐term productive paludiculture is possible. Low water tables were beneficial for T. latifolia productivity and high water tables for T. angustifolia biomass quality. Rewetting will likely create a mosaic of different water table depths. Our findings that the yield of T. angustifolia and tissue chemical composition of T. latifolia were largely unaffected by water table depth are therefore promising. Depending on intended utilization, optimal cultivation conditions and preferable species differ. Considering yield or diameter, e.g., for building materials, T. latifolia is generally preferable over T. angustifolia. A low N, P, K content, high Si content and high C/N‐ratio can be beneficial for processing into disposable tableware, charcoal, or building material. For these utilizations, T. angustifolia is preferable at high water tables, and both species should be cultivated at a low nutrient supply. When cellulose and lignin contents are relevant, e.g., for paper and biodegradable packaging, T. angustifolia is preferable at high water tables and both species should be cultivated at nutrient additions of about 20 kg N ha−1 a−1.  相似文献   

5.
IntroductionAlthough obesity is a risk factor for hip osteoarthritis (OA), the role of body composition, if any, is unclear. This study examines whether the body mass index (BMI) and body composition are associated with hip cartilage changes using magnetic resonance imaging (MRI) in community-based adults.Methods141 community-based participants with no clinical hip disease, including OA, had BMI and body composition (fat mass and fat free mass) measured at baseline (1990 to 1994), and BMI measured and 3.0 T MRI performed at follow-up (2009–2010). Femoral head cartilage volume was measured and femoral head cartilage defects were scored in the different hip regions.ResultsFor females, baseline BMI (β = −26 mm3, 95% Confidence interval (CI) -47 to −6 mm3, p = 0.01) and fat mass (β = −11 mm3, 95% CI −21 to −1 mm3, p = 0.03) were negatively associated with femoral head cartilage volume. Also, while increased baseline fat mass was associated with an increased risk of cartilage defects in the central superolateral region of the femoral head (Odds Ratio (OR) = 1.08, 95% CI 1.00–1.15, p = 0.04), increased baseline fat free mass was associated with a reduced risk of cartilage defects in this region (OR = 0.82, 95% CI 0.67–0.99; p = 0.04). For males, baseline fat free mass was associated with increased femoral head cartilage volume (β = 40 mm3, 95% CI 6 to 74 mm3, p = 0.02).ConclusionsIncreased fat mass was associated with adverse hip cartilage changes for females, while increased fat free mass was associated with beneficial cartilage changes for both genders. Further work is required to determine whether modifying body composition alters the development of hip OA.  相似文献   

6.
The purpose of this study was to develop a protocol to induce high frequency of callus and subsequent plantlet regeneration for Pseudarthria viscida; an important medicinal plant. The cotyledonary node and young leaf pieces (1 × 0.5 cm, length × breadth) were used as explants for callus induction and subsequent shoot regeneration and adventitious roots induction from the shoots. The best results were achieved on the following media: (1) 96 % callus induction from cotyledonary node explants on MS medium supplemented with 1.5 mgl−1 2, 4 dichlorophenoxyacetic acid (2, 4-D) and 0.5 mgl−1 1-naphthalene acetic acid (NAA), (2) 97 % shoot regeneration from cotyledonary node derived calli with an average of 44.9 shoots per explant on MS medium fortified with 3.0 mgl−1 N6-benzylaminopurine (BA) and 1 mgl−1 NAA,37 (3) 98 % rooting with an average number of 3.3 roots per shoot on MS medium containing indole-3-butyric acid (IBA) or NAA (0.5–4 mgl−1) after 45 days. The plantlets were transferred to the field after acclimatization. Of the 40 plantlets transplanted to the soil, 29 survived (72.5 %).  相似文献   

7.
A novel lipase, SCNL, was isolated from Staphylococcus caprae NCU S6 strain in the study. The lipase was purified to homogeneity with a yield of 6.13% and specific activity of 502.76 U/mg, and its molecular weight was determined to be approximately 87 kDa. SCNL maintained above 80% of its initial activity at a wide range of temperatures (20–50 °C) and pH values (6–11), with an optimal temperature at 40 °C and optimal pH at 9.0 with p-nitrophenyl palmitate as a substrate. SCNL exhibited a higher residual activity than the other staphylococcal lipases in the presence of common enzyme inhibitors and commercial detergents. The lipase activity was enhanced by organic solvents (isooctane, glycerol, DMSO and methanol) and metal ions (Na+, Ba2+, Ca2+, and Mn2+). The Km and Vmax values of SCNL were 0.695 mM and 262.66 s−1 mM−1, respectively. The enzyme showed a preference for p-NP stearate, tributyrin and canola oil. These biochemical features of SCNL suggested that it may be an excellent novel lipase candidate for industrial and biotechnological applications.  相似文献   

8.
The biological mechanisms underlying decline in physical function with age remain unclear. We examined the plasma proteomic profile associated with longitudinal changes in physical function measured by gait speed and grip strength in community‐dwelling adults. We applied an aptamer‐based platform to assay 1154 plasma proteins on 2854 participants (60% women, aged 76 years) in the Cardiovascular Health Study (CHS) in 1992–1993 and 1130 participants (55% women, aged 54 years) in the Framingham Offspring Study (FOS) in 1991–1995. Gait speed and grip strength were measured annually for 7 years in CHS and at cycles 7 (1998–2001) and 8 (2005–2008) in FOS. The associations of individual protein levels (log‐transformed and standardized) with longitudinal changes in gait speed and grip strength in two populations were examined separately by linear mixed‐effects models. Meta‐analyses were implemented using random‐effects models and corrected for multiple testing. We found that plasma levels of 14 and 18 proteins were associated with changes in gait speed and grip strength, respectively (corrected p < 0.05). The proteins most strongly associated with gait speed decline were GDF‐15 (Meta‐analytic p = 1.58 × 10−15), pleiotrophin (1.23 × 10−9), and TIMP‐1 (5.97 × 10−8). For grip strength decline, the strongest associations were for carbonic anhydrase III (1.09 × 10−7), CDON (2.38 × 10−7), and SMOC1 (7.47 × 10−7). Several statistically significant proteins are involved in the inflammatory responses or antagonism of activin by follistatin pathway. These novel proteomic biomarkers and pathways should be further explored as future mechanisms and targets for age‐related functional decline.  相似文献   

9.
Soil salinity is the main constraint for crop productivity in many parts of the world. Application of silicon (Si) and chitosan (Chi) can improve crop growth under saline soil conditions. The current study was aimed to examine the effects of Si and Chi on mitigation of salinity, morphological and physiological attributes as well as the antioxidant system of maize (Zea mays L.) under saline soil conditions. A field experiment was conducted that comprised of nine treatments as follows: (i) Control (no amendment), (ii) Silicon 40 kg ha−1 (Si1), (iii) Chitosan 15 kg ha−1 (Chi1), (iv) Si1 + Chi1, (v) Silicon 80 kg ha−1 (Si2), (vi) Chitosan 30 kg ha−1 (Chi2), (vii) Si2 + Chi2, (viii) Si1 + Chi2 and (ix) Si2 + Chi1. Application of Si and Chi substantially improved the morphological and physiological attributes as well as antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of maize plants, and combined application of Si and Chi was more effective when compared with Si and Chi treatments separately. Membrane stability index was improved by 25%, relative water content by 26%, chlorophyll a by 69% and b by 56% with combined application of Si and chitosan (Si2 + Chi2) compared with control. The SOD, POD and CAT increased by 36%, 38% and 65% with Si2 + Chi2 compared with control. The results suggest that Si and Chi application is the possible option for alleviating salinity stress in maize plant. Further research is suggested to examine Si and Chi effects on various crop''s growth.  相似文献   

10.

Background

The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract.

Results

Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2.-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls.

Conclusions

The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.  相似文献   

11.
Adenosine‐3′, 5′‐cyclic monophosphate (cAMP) produced by adenylate cyclases (ADCYs) is an established key regulator of cell homoeostasis. However, its role in cell cycle control is still controversially discussed. This study focussed on the impact of soluble HCO3 ‐activated ADCY10 on cell cycle progression. Effects are quantified with Bayesian inference integrating a mathematical model and experimental data. The activity of ADCY10 in human umbilical vein endothelial cells (HUVECs) was either pharmacologically inhibited by KH7 or endogenously activated by HCO3 . Cell numbers of individual cell cycle phases were assessed over time using flow cytometry. Based on these numbers, cell cycle dynamics were analysed using a mathematical model. This allowed precise quantification of cell cycle dynamics with model parameters that describe the durations of individual cell cycle phases. Endogenous inactivation of ADCY10 resulted in prolongation of mean cell cycle times (38.7 ± 8.3 h at 0 mM HCO3 vs 30.3 ± 2.7 h at 24 mM HCO3 ), while pharmacological inhibition resulted in functional arrest of cell cycle by increasing mean cell cycle time after G0/G1 synchronization to 221.0 ± 96.3 h. All cell cycle phases progressed slower due to ADCY10 inactivation. In particular, the G1‐S transition was quantitatively the most influenced by ADCY10. In conclusion, the data of the present study show that ADCY10 is a key regulator in cell cycle progression linked specifically to the G1‐S transition.  相似文献   

12.
13.
14.
Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150–200 μmol m−2 s−1) or moderate (600–800 μmol m−2 s−1) light conditions. Results were compared with rice plants grown in high (1200–2200 μmol m−2 s−1) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.  相似文献   

15.
IntroductionThe aim of this study was to characterize the association of human leukocyte antigen (HLA) B alleles and major histocompatibility complex (MHC) single nucleotide polymorphisms (SNPs) with Behçet’s disease (BD) in an Iranian dataset.MethodsThe association of three SNPs in the MHC region previously identified as the most associated in high-density genotyping studies was tested in a case–control study on 973 BD patients and 825 controls from Iran, and the association of HLA-B alleles was tested in a subset of 681 patients and 414 controls.ResultsWe found that HLA-B*51 (P = 4.11 × 10−41, OR [95% CI] = 4.63[3.66-5.85]) and B*15 confer risk for BD (P = 2.83 × 10−2, OR [95% CI] = 1.75[1.08-2.84]) in Iranian, and in B*51 negative individuals, only the B*15 allele is significantly associated with BD (P = 2.51 × 10−3, OR [95% CI] = 2.40[1.37-4.20]). rs76546355, formerly known as rs116799036, located between HLA-B and MICA (MHC class I polypeptide-related sequence A), demonstrated the same level of association with BD as HLA-B*51 (Padj = 1.78 × 10−46, OR [95% CI] = 5.46[4.21-7.09], and Padj = 8.34 × 10−48, OR [95% CI] = 5.44[4.20-7.05], respectively) in the HLA-B allelotyped subset, while rs2848713 was less associated (Padj = 7.14 × 10−35, OR [95% CI] = 3.73[2.97-4.69]) and rs9260997 was not associated (Padj = 1.00 × 10−1). Additionally, we found that B*51 genotype-phenotype correlations do not survive Bonferroni correction, while carriers of the rs76546355 risk allele predominate in BD cases with genital ulcers, positive pathergy test and positive BD family history (2.31 × 10−4 ≤ P ≤ 1.59 × 10−3).ConclusionsWe found that the HLA-B*51 allele and the rs76546355/rs116799036 MHC SNP are independent genetic risk factors for BD in Iranian, and that positivity for the rs76546355/rs116799036 risk allele, but not for B*51, does correlate with specific demographic characteristics or clinical manifestations in BD patients.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0585-6) contains supplementary material, which is available to authorized users.  相似文献   

16.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

17.
Postoperative new-onset atrial fibrillation (PNAF) is very common after cardiac surgery and postoperative inflammation may contribute to PNAF by inducing atrial dysfunction. Corticosteroids reduce inflammation and may thus reduce atrial dysfunction and PNAF development. This study aimed to determine whether dexamethasone protects against left atrial dysfunction and PNAF in cardiac surgical patients. Cardiac surgical patients were randomised to a single dose of dexamethasone (1 mg.kg−1) or placebo after inducing anaesthesia. Transoesophageal echocardiography was performed in patients before and after surgery. Primary outcome was left atrial total ejection fraction (LA-TEF) after sternal closure; secondary outcomes included left atrial diameter and PNAF. 62 patients were included. Baseline characteristics were well balanced. Postoperative LA-TEF was 36.4 % in the dexamethasone group and 40.2 % in the placebo group (difference −3.8 %; 95 % confidence interval (CI) -9.0 to 1.4 %; P = 0.15). Postoperative left atrial diameter was 4.6 and 4.3 cm, respectively (difference 0.3; 95 % CI −0.2 to 0.7; P = 0.19). The incidence of PNAF was 30 % in the dexamethasone group and 39 % in the placebo group (P = 0.47). Intraoperative high-dose dexamethasone did not protect against postoperative left atrial dysfunction and did not reduce the risk of PNAF in cardiac surgical patients.  相似文献   

18.
This study compared resting and exercise heat/hypoxic stress-induced levels of plasma extracellular heat shock protein 70 (eHSP70) in humans using two commercially available enzyme-linked immunosorbent assay (ELIS)A kits. EDTA plasma samples were collected from 21 males during two separate investigations. Participants in part A completed a 60-min treadmill run in the heat (HOT70; 33.0 ± 0.1 °C, 28.7 ± 0.8 %, n = 6) at 70 % V̇O2max. Participants in part B completed 60 min of cycling exercise at 50 % V̇O2max in either hot (HOT50; 40.5 °C, 25.4 relative humidity (RH)%, n = 7) or hypoxic (HYP50; fraction of inspired oxygen (FIO2) = 0.14, 21 °C, 35 % RH, n = 8) conditions. Samples were collected prior to and immediately upon termination of exercise and analysed for eHSP70 using EKS-715 high-sensitivity HSP70 ELISA and new ENZ-KIT-101 Amp’d™ HSP70 high-sensitivity ELISA. ENZ-KIT was superior in detecting resting eHSP70 (1.54 ± 3.27 ng·mL−1; range 0.08 to 14.01 ng·mL−1), with concentrations obtained from 100 % of samples compared to 19 % with EKS-715 assay. The ENZ-KIT requires optimisation prior to running samples in order to ensure participants fall within the standard curve, a step not required with EKS-715. Using ENZ-KIT, a 1:4 dilution allowed for quantification of resting HSP70 in 26/32 samples, with a 1:8 (n = 3) and 1:16 (n = 3) dilution required to determine the remaining samples. After exercise, eHSP70 was detected in 6/21 and 21/21 samples using EKS-715 and ENZ-KIT, respectively. eHSP70 was increased from rest after HOT70 (p < 0.05), but not HOT50 (p > 0.05) or HYP50 (p > 0.05) when analysed using ENZ-KIT. It is recommended that future studies requiring the precise determination of resting plasma eHSP70 use the ENZ-KIT (i.e. HSP70 Amp’d® ELISA) instead of the EKS-715 assay, despite additional assay development time and cost required.  相似文献   

19.
Acetate oxidation in Italian rice field at 50 °C is achieved by uncultured syntrophic acetate oxidizers. As these bacteria are closely related to acetogens, they may potentially also be able to synthesize acetate chemolithoautotrophically. Labeling studies using exogenous H2 (80%) and 13CO2 (20%), indeed demonstrated production of acetate as almost exclusive primary product not only at 50 °C but also at 15 °C. Small amounts of formate, propionate and butyrate were also produced from 13CO2. At 50 °C, acetate was first produced but later on consumed with formation of CH4. Acetate was also produced in the absence of exogenous H2 albeit to lower concentrations. The acetogenic bacteria and methanogenic archaea were targeted by stable isotope probing of ribosomal RNA (rRNA). Using quantitative PCR, 13C-labeled bacterial rRNA was detected after 20 days of incubation with 13CO2. In the heavy fractions at 15 °C, terminal restriction fragment length polymorphism, cloning and sequencing of 16S rRNA showed that Clostridium cluster I and uncultured Peptococcaceae assimilated 13CO2 in the presence and absence of exogenous H2, respectively. A similar experiment showed that Thermoanaerobacteriaceae and Acidobacteriaceae were dominant in the 13C treatment at 50 °C. Assimilation of 13CO2 into archaeal rRNA was detected at 15 °C and 50 °C, mostly into Methanocellales, Methanobacteriales and rice cluster III. Acetoclastic methanogenic archaea were not detected. The above results showed the potential for acetogenesis in the presence and absence of exogenous H2 at both 15 °C and 50 °C. However, syntrophic acetate oxidizers seemed to be only active at 50 °C, while other bacterial groups were active at 15 °C.  相似文献   

20.
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号