首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cruciform-resolvase interactions in supercoiled DNA   总被引:42,自引:0,他引:42  
D M Lilley  B Kemper 《Cell》1984,36(2):413-422
T4 endonuclease VII, which cleaves Holliday-like junctions in DNA, specifically cleaves short inverted repeats in supercoiled plasmids. These sequences are subject to site-specific cleavage by single-strand-specific nucleases, and cruciform formation has been suggested as an explanation for this observation. This proposal is greatly strengthened by the present data, since a formal analogy between cruciform structures and Holliday junctions exists. Resolution of a variety of unrelated cruciform sequences demonstrates that the cleavage process results in a linear molecule with hairpin ends and single ligatable nicks at positions corresponding to the stem-base of the cruciform. In two examples mapped in detail, the cleavages are exclusively introduced at two or three nucleotides from the end of the symmetric sequence at the 5' side on each strand. These studies demonstrate the potential of endonuclease VII as a probe of cruciform structure and the utility of short cruciform structures as Holliday junction models.  相似文献   

2.
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.  相似文献   

3.
Inverted repeats capable of forming hairpin and cruciform structures present a threat to chromosomal integrity. They induce double strand breaks, which lead to gross chromosomal rearrangements, the hallmarks of cancers and hereditary diseases. Secondary structure formation at this motif has been proposed to be the driving force for the instability, albeit the mechanisms leading to the fragility are not well-understood. We carried out a genome-wide screen to uncover the genetic players that govern fragility of homologous and homeologous Alu quasi-palindromes in the yeast Saccharomyces cerevisiae. We found that depletion or lack of components of the DNA replication machinery, proteins involved in Fe-S cluster biogenesis, the replication-pausing checkpoint pathway, the telomere maintenance complex or the Sgs1-Top3-Rmi1 dissolvasome augment fragility at Alu-IRs. Rad51, a component of the homologous recombination pathway, was found to be required for replication arrest and breakage at the repeats specifically in replication-deficient strains. These data demonstrate that Rad51 is required for the formation of breakage-prone secondary structures in situations when replication is compromised while another mechanism operates in DSB formation in replication-proficient strains.  相似文献   

4.
The influence of inverted repeat sequences on the melting transitions of linear DNAs has been examined. Derivative melting curves (DMC) of a 514 base pair (bp) DNA, seven subfragments of this DNA, and four other DNAs have been compared to predictions of DNA melting theory. The 514-bp DNA contains three inverted repeat sequences that can form cruciform structures in supercoiled DNA. We refer to these sequences as c-inverted repeats. Previous work showed that the DMC of this DNA, unlike a number of other DNAs, is not accurately predicted by DNA melting theory. Since the theoretical model does not include hairpin-like structures, it was suggested that hairpin or cruciform formation in these inverted repeats may be responsible for this discrepancy. Our results support this hypothesis. Predicted DMCs are in good agreement with DNAs with no inverted repeats, or inverted repeats not evident in supercoiled DNA. Differences between the theoretical and experimental Tm's are less than or equal to 0.3 degrees C. DNA molecules that contain one or more of the three c-inverted repeats are not as accurately predicted. Experimental Tm values are lower than predicted values by 0.7-3.8 degrees C. It is concluded that some inverted repeat sequences can form hairpin-like structures during the melting of linear DNAs. These structures appear to lower overall DNA stability.  相似文献   

5.
We have analyzed the effect of base composition at the center of symmetry of inverted repeated DNA sequences on cruciform transitions in supercoiled DNA. For this we have constructed two series of palindromic DNA sequences: one set with differing center and one set with differing center and arm sequences. The F series consists of two 96-base pair perfect inverted repeats which are identical except for the central 10 base pairs which consist of pure AT or GC base pairs. The S series was constructed such that the overall base composition of the inverted repeats was identical but in which the positioning of blocks of AT- and GC-rich sequences varied. The rate of cruciform formation for the inverted repeats in plasmid pUC8 was dramatically influenced by the 8-10 base pairs at the center of the inverted repeat. Inverted repeats with 8-10 AT base pairs in the center were kinetically much more active in cruciform formation than inverted repeats with 8-10 GC base pairs in the center. These experiments show a dominant influence of the center sequences of inverted repeats on the rate of cruciform formation.  相似文献   

6.
7.
Bzymek M  Lovett ST 《Genetics》2001,158(2):527-540
Spontaneous deletion mutations often occur at short direct repeats that flank inverted repeat sequences. Inverted repeats may initiate genetic rearrangements by formation of hairpin secondary structures that block DNA polymerases or are processed by structure-specific endonucleases. We have investigated the ability of inverted repeat sequences to stimulate deletion of flanking direct repeats in Escherichia coli. Propensity for cruciform extrusion in duplex DNA correlated with stimulation of flanking deletion, which was partially sbcD dependent. We propose two mechanisms for palindrome-stimulated deletion, SbcCD dependent and SbcCD independent. The SbcCD-dependent mechanism is initiated by SbcCD cleavage of cruciforms in duplex DNA followed by RecA-independent single-strand annealing at the flanking direct repeats, generating a deletion. Analysis of deletion endpoints is consistent with this model. We propose that the SbcCD-independent pathway involves replication slipped mispairing, evoked from stalling at hairpin structures formed on the single-stranded lagging-strand template. The skew of SbcCD-independent deletion endpoints with respect to the direction of replication supports this hypothesis. Surprisingly, even in the absence of palindromes, SbcD affected the location of deletion endpoints, suggesting that SbcCD-mediated strand processing may also accompany deletion unassociated with secondary structures.  相似文献   

8.
An inverted repeat has been created in a plasmid by ligation of two 13 nucleotide synthetic oligonucleotides into the cloning vector pAT153. The resulting recombinant plasmid, pIRbke8, is hypersensitive to cleavage by the single-strand-specific nuclease S1, and to modification by the single-strand-selective reagent bromoacetaldehyde, when the plasmid is negatively supercoiled. The new inverted repeat is a stronger S1 site than those derived from pBR322, but, in contrast to the ColE1 and phi X174 RF inverted repeats, these repeats share a similar temperature dependence. The kinetics of EcoRI cleavage at the centre of the synthetic inverted repeat have been studied in supercoiled and linear molecules. It is found that in the supercoiled molecule this target is not refractory to EcoRI cleavage to an extent which is greater than the resolution of the experiment. We conclude that in this molecule the cruciform is in a dynamic equilibrium with the regular duplex, in which the cruciform constitutes a relatively small subpopulation of conformational species.  相似文献   

9.
10.
Bromoacetaldehyde, a reagent which modifies unpaired adenine residues, selectively modifies supercoiled DNA in the region of inverted repeats which are known targets for single-strand-specific nucleases. The reaction is dependent upon the topological state of the molecule, and the absolute importance of the inverted repeat has been demonstrated. Finer mapping of the distribution of the modification pattern reveals significant and interesting differences from the S1 nuclease target positions. Bromoacetaldehyde modification is distributed over a wider region covering the whole inverted repeat, with greatest extent of reaction in the regions which flank the inverted repeat. It is suggested that an altered conformation may be propagated into these sequences. These results further support the contention that inverted repeats adopt an altered conformation when negatively supercoiled, for which the principal suggestion remains the cruciform structure.  相似文献   

11.
12.
During cruciform extrusion, a DNA inverted repeat unwinds and forms a four-way junction in which two of the branches consist of hairpin structures obtained by self-pairing of the inverted repeats. Here, we use single-molecule DNA nanomanipulation to monitor in real-time cruciform extrusion and rewinding. This allows us to determine the size of the cruciform to nearly base pair accuracy and its kinetics with second-scale time resolution. We present data obtained with two different inverted repeats, one perfect and one imperfect, and extend single-molecule force spectroscopy to measure the torque dependence of cruciform extrusion and rewinding kinetics. Using mutational analysis and a simple two-state model, we find that in the transition state intermediate only the B-DNA located between the inverted repeats (and corresponding to the unpaired apical loop) is unwound, implying that initial stabilization of the four-way (or Holliday) junction is rate-limiting. We thus find that cruciform extrusion is kinetically regulated by features of the hairpin loop, while rewinding is kinetically regulated by features of the stem. These results provide mechanistic insight into cruciform extrusion and help understand the structural features that determine the relative stability of the cruciform and B-form states.  相似文献   

13.
Inverted-repeated or palindromic sequences have been found to occur in both prokaryotic and eukaryotic genomes. Such repeated sequences are usually short and present at several functionally important regions in the genome. However, long palindromic sequences are rare and are a major source of genomic instability. The palindrome-mediated genomic instability is believed to be due to cruciform or hairpin formation and subsequent cleavage of this structure by structure-specific nucleases. Here we present both genetic and physical evidence that long palindromic sequences (>50 bp) generate double-strand breaks (DSBs) at a high frequency during meiosis in the yeast Saccharomyces cerevisiae. The palindrome-mediated DSB formation depends on the primary sequence of the inverted repeat and the location and length of the repeated units. The DSB formation at the palindrome requires all of the gene products that are known to be responsible for DSB formation at the normal meiosis-specific sites. Since DSBs are initiators of nearly all meiotic recombination events, most of the palindrome-induced breaks appear to be repaired by homologous recombination. Our results suggest that short palindromic sequences are highly stable in vivo. In contrast, long palindromic sequences make the genome unstable by inducing DSBs and such sequences are usually removed from the genome by homologous recombination events.  相似文献   

14.
Nucleotide sequence analysis revealed that a DNA length polymorphism 5' to the human antithrombin III gene is due to the presence of 32bp or 108bp nonhomologous nucleotide sequences (variable segments) 345bp upstream from the translation initiation codon. Sequences at the 3' borders of both variable segments can form intrastrand inverted repeat structures with sequences further downstream. An inverted repeat is also found immediately 5' to the site where the variable segments are located. Thus, cruciform structures may form flanking the variable segments of both alleles of this DNA length polymorphism. DNA secondary structure may be detected with single strand specific nucleases. S1 nuclease sensitive sites were mapped in recombinant plasmids containing the cloned alleles of the ATIII length polymorphism. The site most sensitive to S1 is located upstream from the variable segments in an AT-rich segment flanked by 6bp direct repeats. A region of lesser nuclease sensitivity was also observed in the AT-rich loops formed between the inverted repeats 5' to the variable segments.  相似文献   

15.
There are two alternative pathways by which inverted repeat sequences in supercoiled DNA molecules may extrude cruciform structures, called C-type and S-type. S-type cruciforms, which form the great majority, are characterised by absolute requirement for cations to promote extrusion, which then proceeds at higher temperatures and with lower activation parameters than for C-type cruciforms. The mechanism proposed for S-type extrusion involves an initial opening of basepairs limited to the centre of the inverted repeat, formation of intra-strand basepairing and a four-way junction, and finally branch migration to the fully extruded cruciform. The model predicts that central sequence changes will be more kinetically significant than those removed from the centre. We have studied the kinetics of cruciform extrusion by a series of inverted repeats related to that of pIRbke8 by either one or two mutations in the symmetric unit. We find that mutations in the central 8 to 10 nucleotides may profoundly affect extrusion rates--the fastest being 2000-fold faster than the slowest, whereas mutations further from the centre affect rates to a much smaller extent, typically up to ten-fold. These data support the proposed mechanism for extrusion via central opening.  相似文献   

16.
Inverted repeats occur nonrandomly in the DNA of most organisms. Stem-loops and cruciforms can form from inverted repeats. Such structures have been detected in pro- and eukaryotes. They may affect the supercoiling degree of the DNA, the positioning of nucleosomes, the formation of other secondary structures of DNA, or directly interact with proteins. Inverted repeats, stem-loops, and cruciforms are present at the replication origins of phage, plasmids, mitochondria, eukaryotic viruses, and mammalian cells. Experiments with anti-cruciform antibodies suggest that formation and stabilization of cruciforms at particular mammalian origins may be associated with initiation of DNA replication. Many proteins have been shown to interact with cruciforms, recognizing features like DNA crossovers, four-way junctions, and curved/bent DNA of specific angles. A human cruciform binding protein (CBP) displays a novel type of interaction with cruciforms and may be linked to initiation of DNA replication. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Length-dependent cruciform extrusion in d(GTAC)n sequences   总被引:1,自引:0,他引:1  
pBR322-derived plasmids have been constructed carrying d(GTAC)n.d(GTAC)n inserts of different lengths, in order to investigate the effect of insert size on cruciform extrusion and/or the B-Z transition. Plasmids with n ranging from 4 to 12 are hypersensitive to cleavage by the single-strand specific nucleases, S1 nuclease and Bal31 nuclease. Hypersensitive sites associated with the smaller alternating purine-pyrimidine tracts, however, coexist with the major pBR322 sites. Site-selective cleavage of these plasmids with the resolvase, T7 endonuclease I, demonstrates that all the inserts form cruciform structures when stably integrated into negatively supercoiled plasmids. An increase in the negative superhelical density of the DNA's induces cruciform formation within the insert region, resulting in a reduction in torsional stress consistent with the size of the insert. Moreover, as n decreases, the superhelical density required to stabilise the cruciform state increases. Therefore, the cruciform geometry is the favoured conformation of these d(GTAC)n.d(GTAC)n sequences under torsional stress. The stability of these cruciforms increases as n increases, with cruciformation occurring at lower superhelical densities and to the exclusion of the other pBR322 cruciforms.  相似文献   

18.
D. K. Nag  A. Kurst 《Genetics》1997,146(3):835-847
Palindromic sequences have the potential to form hairpin or cruciform structures, which are putative substrates for several nucleases and mismatch repair enzymes. A genetic method was developed to detect such structures in vivo in the yeast Saccharomyces cerevisiae. Using this method we previously showed that short hairpin structures are poorly repaired by the mismatch repair system in S. cerevisiae. We show here that mismatches, when present in the stem of the hairpin structure, are not processed by the repair machinery, suggesting that they are treated differently than those in the interstrand base-paired duplex DNA. A 140-bp-long palindromic sequence, on the contrary, acts as a meiotic recombination hotspot by generating a site for a double-strand break, an initiator of meiotic recombination. We suggest that long palindromic sequences undergo cruciform extrusion more readily than short ones. This cruciform structure then acts as a substrate for structure-specific nucleases resulting in the formation of a double-strand break during meiosis in yeast. In addition, we show that residual repair of the short hairpin structure occurs in an MSH2-independent pathway.  相似文献   

19.
Abstract

pBR322-derived plasmids have been constructed carrying d(GTAC)n·d(GTAC)n inserts of different lengths, in order to investigate the effect of insert size on cruciform extrusion and/or the B-Z transition. Plasmids with n ranging from 4 to 12 are hypersensitive to cleavage by the single-strand specific nucleases, S1 nuclease and Bal31 nuclease. Hypersensitive sites associated with the smaller alternating purine-pyrimidine tracts, however, coexist with the major pBR322 sites. Site-selective cleavage of these plasmids with the resolvase, T7 endonuclease I, demonstrates that all the inserts form cruciform structures when stably integrated into negatively supercoiled plasmids. An increase in the negative superhelical density of the DNA's induces cruciform formation within the insert region, resulting in a reduction in torsional stress consistent with the size of the insert. Moreover, as n decreases, the superhelical density required to stabilise the cruciform state increases. Therefore, the cruciform geometry is the favoured conformation of these d(GTAC)n·d(GTAC)n sequences under torsional stress. The stability of these cruciforms increases as n increases, with cruciformation occurring at lower superhelical densities and to the exclusion of the other pBR322 cruciforms.  相似文献   

20.
Cheung AK 《Journal of virology》2004,78(17):9016-9029
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号