首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of low and moderate salinity (100 and 200 mM NaCl, respectively) and iso-osmotic stress generated by polyethylene glycol PEG (1) (–0.3 MPa) and PEG (2) (–0.6 MPa) on maximum quantum yield of photosystem II (PSII), growth, photosynthesis, transpiration, dark respiration, water use efficiency (WUE), water content, chlorophyll, proline, Na+ and K+ concentrations were investigated in shoots of two ecotypes С3–С4 xero-halophyte Bassia sedoides (Pall.) Aschers. Plants were grown from seeds of two Southern Urals populations (Makan and Podolsk) differing in their bioproductivity. Aboveground biomass of the Makan plants was approximately 10-fold higher than that of the Podolsk ecotype. The plants of both ecotypes were sensitive to water deficit. They showed similar decrease in biomass, water content, net photosynthesis and transpiration intensity under both low and moderate osmotic stress (PEG). However, the content of сhlorophyll and free proline in shoots of the Podolsk plants increased under moderate osmotic stress (PEG(2)). Under salinity the differences between transpiration, Fv/Fm, WUE, water content, chlorophyll and proline concentrations in shoots of two ecotypes were no found. But, the Podolsk plants showed decrease in the growth parameters (1.5-fold), increase in the dark respiration intensity (2-fold) and the Na+/K+ ratio (1.2-fold) under moderate salinity (200 mM NaCl). Thus, the reduction of bioproductivity of the Podolsk ecotype under salinity was the result of ionic rather than osmotic factor of salinity. In the Podolsk plants the additional transpiration costs and consumption of assimilates (correspondingly) increased with the toxic sodium ion accumulation under salinity. This led to decrease in the growth parameters. Thus, two B. sedoides ecotypes have different adaptive strategies of tolerance to the ionic factor of salt stress at the level of the physiological processes associated with the dark CO2 gas exchange. Moreover, in less tolerant and productive Podolsk ecotype the increase in proline content in shoots characterized comparatively low adaptation to osmotic factor, and the increase in dark respiration and the Na+/K+ ratio pointed to relatively low resistance to ion factor of salinity as compared with the Makan ecotype.  相似文献   

2.
Several long-chain n-alkyl coumarates and ferulates were identified in cattails (Typha domingensis and Typha latifolia) from the Florida Everglades. Characterization of these compounds was achieved based on the interpretation of mass spectra obtained by GCMS as their trimethylsilyl ether derivatives, comparison with published mass spectra and available standards. Both n-alkyl p-coumarates and n-alkyl ferulates were identified in roots and leaves of both Typha species, featuring unique distribution patterns and differences between leaf and root biomass. For both Typha species, roots have higher concentrations and a much greater diversity of n-alkyl p-coumarates and ferulates but with different side chain carbon numbers ranging from C14 to C28. Typha domingensis leaves only contained n-alkyl ferulates with traces of n-alkyl p-coumarates, while both types of compounds were present in Typha latifolia leaf material. These chemicals were not found in the other dominant wetland vegetation, which suggests their potential for application as phytochemical tracers of fresh cattail-derived organic matter in the Everglades ecosystem.  相似文献   

3.
不同生态型芦苇种群对盐胁迫的生长和光合特性   总被引:2,自引:0,他引:2  
土壤盐渍化是影响我国土壤利用效率的主要因素之一,芦苇是改良土壤盐渍化的良好实验材料,但芦苇有着多种的生态型,比较各生态型芦苇的耐盐差异成为亟待解决的问题。通过设置淡水(0.00%)与加盐(质量浓度2.00%)处理控制实验,测量芦苇的生长指标和光合指标,比较河口型芦苇与内陆型芦苇耐盐性,寻找合适生态型的芦苇作为改良土壤盐渍化的生物材料。在实验中,与淡水条件相比,加盐(2.00%)处理条件下,河口型芦苇和内陆型芦苇的株高(height)、蒸腾速率(E)均显著性下降,但是两种生态型的芦苇的水分利用效率(WUE)明显提高;河口型的芦苇相对生长速率(RGR)和气孔导度(Gs)都明显高于内陆型芦苇。在淡水环境中,河口型芦苇的相对生长速率(RGR)和净光合速率(A)都显著性地高于内陆型芦苇。结果表明两种生态型的芦苇在进化过程中存在一定程度上的分化,盐胁迫会抑制两种芦苇的生长,两种生态型芦苇的相对生长速率和气孔导度在盐胁迫下出现明显地差异,表明两种生态型的芦苇对盐度的响应机制有所差异。相比于内陆型芦苇,河口型芦苇有着更强的耐盐性,内陆型及河口型芦苇的表型性状差异主要是由于其原生境的差异所决定的。  相似文献   

4.
Pollen and seed proteins of seven selected North American and Puerto RicanTypha populations were compared using two serological methods and disc electrophoresis. These methods were capable of discriminating among all taxa studied:Typha latijolia, T. angustifolia, T. ×glauca, andT. domingensis. The two hybrid populations were found to contain proteins not found in either parent.Typha domingensis was serologically the most distinct of the four taxa. The diagnostic morphological characteristics forTypha species were studied in all populations, and statistical comparisons are presented. Data from the morphological observations agreed with the information obtained from the chemosystematic research. All data indicate that the three taxa should be maintained as separate species. The hybrid nature of the putativeT. ×glauca is verified by both the biochemical and morphological data. Observed morphological and biochemical differences support taxonomic treatments in whichT. domingensis is designated as a separate species  相似文献   

5.

Background and Aims

In the Florida Everglades, the expansion of cattail (Typha domingensis) into areas once dominated by sawgrass (Cladium jamaicense) has been attributed to altered hydrology and phosphorus (P) enrichment. The objective of this study was to quantify the interactive effects of P availability and soil redox potential (Eh) on the growth and nutrient responses of Typha, which may help to explain its expansion.

Methods

The study examined the growth and nutrient responses of Typha to the interactive effects of P availability (10, 80 and 500 µg P L−1) and Eh level (−150, +150 and +600 mV). Plants were grown hydroponically in a factorial experiment using titanium (Ti3+) citrate as a redox buffer.

Key Results

Relative growth rate, elongation, root-supported tissue/root ratio, leaf length, lateral root length and biomass, as well as tissue nutrient concentrations, were all adversely affected by low Eh conditions. P availability compensated for the negative effect of low Eh for all these variables except that low P stimulated root length and nutrient use efficiency. The most growth-promoting treatment combination was 500 µg P L−1/ + 600 mV.

Conclusions

These results, plus previous data on Cladium responses to P/Eh combinations, document that high P availability and low Eh should benefit Typha more than Cladium as the growth and tissue nutrients of the former species responded more to excess P, even under highly reduced conditions. Therefore, the interactive effects of P enrichment and Eh appear to be linked to the expansion of Typha in the Everglades Water Conservation Area 2A, where both low Eh and enhanced phosphate availability have co-occurred during recent decades.Key words: Everglades, growth, nutrient, phosphorus, redox potential, Typha domingensis  相似文献   

6.
Two populations, one from lesser saline Derawar Fort (DF) and the other from highly saline Ladam Sir (LS) in the Cholistan desert, for each of the five grass species, Aeluropus lagopoides, Cymbopogon jwarancusa, Lasiurus scindicus, Ochthochloa compressa, and Sporobolus ioclados were examined to investigate the influence of salinity on structural and functional characteristics of stomata. Salinity tolerance in A. lagopoides mainly depended on controlled transpiration rate (E) and high water-use efficiency (WUE), which was found to be regulated by fewer and smaller stomata on both leaf surfaces as well as stomatal encryption by epidermal invaginations. C. jwarancusa had sunken stomata on the abaxial surface only, which largely reflected a reduced E, but less affected stomatal conductance (g s) or WUE. L. scindicus had fewer but larger stomata along with hairs/trichomes which may function to avoid water loss through transpiration, and hence, to attain a high WUE. In O. compressa stomata were found only on the abaxial surface and these were completely encrypted by epidermal invaginations as well as a dense covering of microhairs, which was associated with a low E and high WUE under salinity stress. In S. ioclados, the traits of increased stomatal density and decreased stomatal area may be critical for stomatal regulation under salt-prone environments. High stomatal regulation depended largely on stomatal density, area, and degree of encryption under salinity, which is of great ecophysiological significance for plants growing under osmotic stresses.  相似文献   

7.
This study was aimed at obtaining detailed information about the interaction of NaCl-salinity and elevated atmospheric CO2 concentration in the potential cash crop halophyte Aster tripolium. Plants were irrigated with 5 different salinity levels (0, 25, 50, 75 and 100% sws) under ambient and elevated (520 ppm) CO2. Under saline conditions leaf water potential decreased to a value below the one of the nutrient solution. Osmotic adjustment was mainly due to the accumulation of sodium and chloride (includer type). However, the salt was unequally distributed within the plants. K/Na selectivity was high in the lateral roots and low in the petioles, so that these organs served as “salt filters” which prevented an excessive salt accumulation and ion toxicity in the leaf blades and in the main root, the storage organ for organic substances. Despite some signs of ion toxicity and nutrial imbalance, these factors do not seem to be predominantly responsible for the limited salinity tolerance of A. tripolium. In order to maintain a positive water balance the salt treated plants increased stomatal resistance. But at the same time stomata closure led to a significant decrease in photosynthesis and thus in WUE. The impaired assimilation rate contributed to the significant growth depression (50% reduction of the maximum yield between 50% and 75% sws), together with the higher energy consumption needed for various salinity tolerance mechanisms, e.g. for an enhanced synthesis of compatible solutes (proline, carbohydrates) and stress-induced proteins. Elevated atmospheric CO2 concentration led to a significant increase in photosynthesis and in WUE. The latter indicates, together with a higher water potential, that the water relations of the plants had improved. By reducing stomatal resistance energy gain was maximized. The additional supply with energy-rich organic substances was not employed for producing more biomass but for increasing the investment in salinity tolerance mechanisms, e.g. for an enhanced synthesis of proline, carbohydrates and proteins. These mechanisms led to a higher survival rate under saline conditions, i.e. to an improved salt tolerance. The results of the study indicate that A. tripolium is a promising cash crop halophyte which will probably benefit from rising atmospheric CO2 concentrations in future.  相似文献   

8.
《Flora》2006,201(2):102-107
Light and scanning electron microscopy were used to study leaf and stem fine structure of the drought deciduous green-stemmed Mediterranean shrub Calicotome villosa (Poiret) Link. (Leguminosae). Each leaf consists of three small obovate leaflets with abundant but small (16 μm length) anomocytic stomata on both surfaces. Adaxial surface exhibits more than double stomatal density (440±8 mm−2) than the abaxial one (185±4 mm−2). T-shaped trichomes (36±3 mm−2) are present only on the abaxial leaf surface. Leaves are unifacial, furnished with palisade parenchyma on both sides. The stem is characterized by raised ridges and grooves. Beneath the one-cell-layered epidermis sclerenchyma is found on ridges, whereas stomata and palisade chlorenchyma are found in grooves. Hairs are abundant, especially in grooves. Stem and leaf palisade chlorenchymas are structurally similar. According to these data, photosynthesis could be efficiently supported by the stem.  相似文献   

9.
Smith WK 《Plant physiology》1980,65(1):132-135
The quantitative importance of aerodynamic resistance to H2O vapor and CO2 exchange was determined for shoots from saplings of three conifers (Abies lasiocarpa [Hook] Nutt., Pinus contorta Dougl., Juniperus communis L.) under natural conditions in the field. A combination of relatively low stomatal resistances (<300 seconds per centimeter) and low wind speeds (<30 centimeters per second) led to substantial contributions of the aerodynamic resistance (Rwva) to water use efficiency (WUE = photosynthesis/transpiration) for all three species. For A. lasiocarpa, transpiration was calculated to be 44% less and photosynthesis 17% less due to the presence of Rwva, which led to a predicted increase in WUE of 57% compared to the calculated WUE when Rwva was assumed negligible. Similar increases in WUE were computed for P. contorta (48%) with somewhat smaller values for J. communis (34%). These results are discussed in terms of the estimated importance of Rwva on water and photosynthetic relations of plants that have relatively low stomatal resistances and grow in microhabitats with low winds.  相似文献   

10.
Naturally adapted salt tolerant populations provide a valuable material for exploring the adaptive components of salt tolerance. Under this aspect, two populations of Cynodon dactylon (L.) Pers. were subjected to salt stress in hydroponics. One was collected from a heavily salt-affected soil in the vicinity of a natural salt lake, Uchhali Lake, in the Salt Range of the Punjab province of Pakistan, and the other from a normal non-saline habitat from the Faisalabad region. The NaCl treatments in Hoagland's nutrient solution were: Control (no salt), 50, 100, 150 and 200 mM of NaCl. After 8 weeks of growth in hydroponics produced biomass, ion relations, and photosynthetic capacity were measured in the differently adapted ecotypes. In the ecotype of C. dactylon from the Salt Range, shoot dry weight was only slightly affected by varying levels of salt. However, in contrast, its root weight was markedly increased. On the other hand, the ecotype from Faisalabad (non-saline habitat) showed a marked decrease in shoot and root dry weights under saline regimes. The ecotype from the Salt Range accumulated relatively less amount of Na+ in the shoot than did that from Faisalabad, particularly at higher salt levels. Shoot or root K+ and Ca2+ contents varied inconsistently in both ecotypes under salt stress. All the photosynthetic parameters, leaf water potential and osmotic potential, and chlorophyll content in both ecotypes were adversely affected by salt stress, but all these physiological attributes except turgor potential and soluble sugars were less affected at high salinities in the salt tolerant ecotype from Salt Range. This ecotype accumulated significantly higher organic osmotica (total free amino acids, proline, total soluble proteins, and total soluble sugars) under saline conditions than its intolerant counterpart. Overall, the salt tolerant ecotype of C. dactylon from the Salt Range showed high salt tolerance due to its restricted uptake of Na+ accompanied by an increased uptake of K+ and Ca2+ in the roots as well as shoot due to its higher photosynthetic capacity and accumulation of organic osmotica such as free amino acids and proline under saline conditions.  相似文献   

11.
Four ecotypes of the species Lycopersicon cheesmanii ssp. minor (Hook.) C.H. Mull. from the Galapagos Islands were compared with L. esculentum Mill cv. VF 36 with respect to salt tolerance. The L. cheesmanii ecotype that proved most salt-tolerant was selected for detailed comparison with the L. esculentum cultivar. Plants were grown in modified Hoagland solution salinized with synthetic seawater salt mix. Growth rates under saline conditions were examined and amino acid, sugar, total amino nitrogen, free acidity, and Na and K levels in the tissues of the most and least tolerant plants were measured under salt stress and nonstress conditions. Results indicate that all Galapagos ecotypes were far more salt-tolerant than was the esculentum cultivar. They could survive in full strength seawater nutrient solution while the esculentum cultivar could not in most cases withstand levels higher than 50% seawater. Growth rates were reduced in both species under saline conditions but the esculentum cultivar was more severely affected. High levels of total amino nitrogen, specific amino acids, and free acidity along with low sodium content were found in the salt stressed VF 36 cultivar. The opposite responses were noted in the salt stressed treatments of the Galapagos ecotype. Tissue sugar levels did not appear to be similarly correlated with salt stress in either species. Potassium content fell sharply during salinization in the Galapagos ecotype while in the esculentum cultivar it declined relatively little even at high levels of salinity.  相似文献   

12.
Summary Seed and transplanted adult plants from populations of Festuca rubra, collected from inland, salt-marsh and sand-dune sites were grown on culture solution with added sodium chloride. The growth of the populations of the three habitats was reduced differentially by salt. The salt marsh ecotype Festuca rubra ssp. litoralis was only slightly affected and the inland ecotype F. rubra ssp. rubra was severely retarded at 60 mM NaCl. The dune ecotype F. rubra ssp. arenaria had an intermediate tolerance. The tolerant ecotypes accumulated less sodium chloride as compared to the sensitive ecotype, suggesting that salt tolerance is caused in part by salt exclusion.In addition, the dune ecotype F.r. arenaria appeared to be more drought tolerant than the salt marsh ecotype. Abscission of salt-saturated leaves does not function as an adaptation to salinity in Festuca rubra.All three ecotypes accumulated proline with increased salinity. The response was most pronounced in the drought tolerant F.r. arenaria, indicating that proline accumulation is a response to osmotic stress rather than to ion-specific effects of salinity. The observed differences in salt tolerance may be explained by differential sensitivity to toxic effects of sodium chloride.The occurrence on a beach plain of closely adjacent populations of F.r. arenaria and F.r. litoralis, differing markedly in salt tolerance, is briefly discussed.  相似文献   

13.
Though halophytes are naturally adapted to salinity, their salt-tolerance limits are greatly influenced by their provenance and developmental stage. In the present study, physio-biochemical responses of two Tunisian ecotypes of the oilseed coastal halophyte Cakile maritima (Brassicaceae) to salinity (0–400 mM NaCl) were monitored during germination and vegetative growth stages. Tabarka and Jerba seeds were collected from humid or arid climatic areas, respectively. Plant response to salinity appeared to depend on the ecotype and salinity levels. Increasing salinity inhibited germination process. Jerba seeds were found to be more salt tolerant than the Tabarka ones. At the autotrophic stage of growth and under salt-free conditions, Jerba was less productive than Tabarka (in terms of dry matter accumulation), but plant biomass production and leaf expansion (area and number) of the former ecotype were progressively improved by 100 mM NaCl, as compared to the control. In contrast, at the same salt concentration, these parameters decreased under increasing salinity in Tabarka (salt sensitive). Leaf chlorophyll content was reduced at severe salinity, but this effect was more conspicuous in the sensitive Tabarka plants. Na+ contents in the Jerba and Tabarka leaves collected from the 400 mM NaCl-treated plants were 17- and 12-fold higher than in the respective controls. This effect was accompanied by a significant reduction in the leaf K+, Mg2+ and Ca2+ contents, especially in the salt-treated Tabarka. A significant accumulation of proline and soluble carbohydrates in leaves was found during the period of intensive leaf growth. These organic compounds likely play a role in leaf osmotic adjustment and in protection of membrane stability at severe salinity.  相似文献   

14.

Background and Aims

Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted.

Methods

Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke.

Key Results and Conclusions

Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1–3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants.  相似文献   

15.
《Aquatic Botany》2005,83(4):296-309
We investigated to what extent DNA-markers can assist species determination in the genus Typha. A set of AFLP markers was used to discriminate samples of the species Typha latifolia and Typha angustifolia collected in Flanders (North Belgium). The T. latifolia samples formed a compact cluster while the T. angustifolia samples were divided into smaller groups. It was not clear whether interspecific hybrids or higher levels of diversity present in the T. angustifolia dataset could account for this. As in previous surveys, using isozyme and VNTR markers, AFLP markers revealed an almost complete lack of genetic variation in Flemish T. latifolia. Despite the low degree of diversity, a significant level of genetic differentiation was found between the T. latifolia samples originating from different river basins. Whether this differentiation has any ecological relevance remains to be investigated. The methodology applied was not able to detect clonal reproduction in T. latifolia. Probably, the low levels of diversity present in this species can account for this, indicating that the usefulness of the methodology applied depends on the level of diversity present in the species studied.  相似文献   

16.
Natural interspecific hybridization between Typha latifolia L. and Typha angustifolia L. was analyzed by morpho-anatomical and molecular methods to determine whether the hybrid Typha glauca Godr. is present in Poland and to identify the best diagnostic traits for its identification. Eighty-three samples of the Typha species were collected. Nine random amplified polymorphic DNA (RAPD) primers provided 12 fragments specific for T. angustifolia and eight fragments specific for T. latifolia. DNA of all sampled individuals was analyzed with 20 diagnostic RAPD markers. The morpho-anatomical variability of T. glauca F1 was found to be quite similar to that observed in parental plants. All of the 41 traits examined in the hybrids overlapped with those observed in the parents, however, the hybrids were visibly closer to T. angustifolia than to T. latifolia. The most discriminate characteristics were the length and pedicel width, as well as the epidermal cell thickness located above vascular bundles in leaf blades. Moreover, preliminary observations of seed sculpture showed that the length of testa cells could also be used to identify T. glauca. Clusters and the hybrid index (for molecular and morphological data) were highly coincident and support the hybridization hypothesis.  相似文献   

17.
To understand the physiological response under salt stress, photosynthesis, PSII efficiency, contents of ions and free amino acids in leaves of Caragana korshinskii Kom (Caragana) exposed to three levels of salinity were investigated. Results showed that the decrease in photosynthesis of Caragana with salt stress was largely dependent on stomatal closure during the experimental period. In the early period of stress, due to the dissipation of excess excitation energy which occurred by the increase in non-photochemical quenching, photodamage was avoided and maximum efficiency of PSII was not affected. However, with increased salt stress, the photoprotective mechanism was not sufficient to avoid oxidative damage. Thus, damage to PSII and its resulting non-stomatal inhibition of photosynthesis may occur. At 18 days with 300 mM NaCl treatment, a non-stomatal factor was responsible for the inhibition of photosynthesis. Accumulation of Na+ and K+ in leaves indicated no competition between Na+ and K+ absorption, which suggests the potential for a unique pathway of Na+ absorption in Caragana. There was a critical salinity level for the accumulation of free amino acids in salt-treated leaves of Caragana, i.e., free amino acids accumulated slowly below critical level, but rapidly above the critical level. In addition, proline was the most abundant among all individual free amino acids.  相似文献   

18.
In northeastern North America, an important wetland invader is the cattail Typha × glauca, a hybrid of native Typha latifolia and introduced Typha angustifolia. Although intensively studied in localized wetlands around the Great Lakes, the distributions of the hybrid and its parental species across broad spatial scales are poorly known. We obtained genotypes from plants collected from 61 sites spanning two geographical regions. The first region, near the Great Lakes and St. Lawrence Seaway (GLSL), has experienced substantial Typha increases over the last century, whereas more modest increases have occurred in the second region across Nova Scotia, New Brunswick, and Maine (NSNB). We found that hybrids predominate in the GLSL region, thriving in both disturbed and undisturbed habitats, and are expanding at the expense of both parental species. In contrast, the native T. latifolia is by far the most common of the three taxa across all habitat types in the NSNB region. We found no evidence that the formation of backcrossed and advanced-generation hybrids is limited by the reproductive barriers that are evident in F1 hybrids. However, although backcrossed individuals arise in both regions, they are much less common than F1 hybrids, which may explain why the parental species boundary remains. We conclude that F1 hybrids are playing a key role in the invasion of wetlands in the GLSL region, whereas their low frequency in the NSNB region may explain why Typha appears to be much less invasive further east. An improved understanding of these contrasting patterns of distribution is necessary before we can accurately predict future wetland invasions.  相似文献   

19.
Interactions between UV-B radiation and drought stress have been studied but the underlying mechanisms have not been thoroughly investigated. We hypothesized that UV-B radiation would improve water-use efficiency (WUE) by its effects on epidermal development, specifically stomatal density, and leaf gas exchange. Four lines of soybean (Glycine max: Essex, Williams, OX921, and OX922) were grown for 28 days in a glasshouse with and without supplemental UV-B radiation levels of 13 kJ m−2 biologically effective radiation. UV-B radiation increased phenolic content of leaves in all lines and reduced leaf area in all lines except Williams. Adaxial stomatal density was reduced in Essex, OX921, and OX922 but abaxial stomatal density was reduced only in OX922. Stomatal conductance was reduced in concert with stomatal density as was internal CO2 concentration (Ci). Instantaneous WUE was increased in Essex, Williams, and OX922. Stable carbon isotope analysis showed similar trends in long-term WUE, but these were only statistically significant in OX922. These results suggest that some soybean cultivars may respond to increased levels of UV-B by increasing WUE and that this response could be manifested through changes in stomatal development and functioning. Field studies are needed to test this hypothesis and to further evaluate the role of the K9 gene in this response.  相似文献   

20.
Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences. The dominant ecotype was generally more abundant and occurred in high-salt conditions (34%); the low abundance ecotype always co-occurred but was enriched at salinities around 20% or lower and carried unique gene content related to solute transport and gene regulation. Despite their apparent distinct ecological preferences, the ecotypes did not outcompete each other presumably due to weak functional differentiation between them. Further, the osmotic shock selected for a temporal increase in taxonomic and functional diversity at both the Hqr. walsbyi population and whole-community levels supporting the specialization-disturbance hypothesis, that is, the expectation that disturbance favors generalists. Altogether, our results provide new insights into how intraspecies diversity is maintained in light of substantial gene-content differences and major environmental perturbations.Subject terms: Water microbiology, Microbial ecology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号