首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase (CDK) and cell division control (CDC2) sequences are strongly conserved among eukaryotes and may complement the use of other sequence families in eukaryotic phylogenetic inference. We synthesized degenerate PCR primers to amplify the catalytic region of CDK homologs in representatives of the earliest available lineages of eukaryotes. CDK family sequence-based, maximum-likelihood distance measurements with neighbor joining, and Fitch-Margoliash least-squares analyses produced unrooted dendrograms that included protists, yeasts, and higher eukaryotes. Bootstrap confidence estimates supported CDK-based phylogenetic groupings among the protists, fungi, and vertebrates although resolution within these groups was often insignificant. However, Trichomonas vaginalis and Giardia lamblia exhibited two of the most divergent CDK-like sequences consistent with rRNA-phylogenetic inference of early divergence of these eukaryotic lineages. In the evolution from unicellular to multicellular organisms, a constellation of amino acid residues aligning with the human, CDK N-terminal sheet may have undergone abrupt replacement.Abbreviations CDC cell division control - CDK cyclin-dependent kinase family - PCR polymerase chain reaction Correspondence to: D.E. Riley  相似文献   

2.
Summary We have analyzed 18 kb of DNA in and upstream of thedefective chorion-1 (dec-1) locus of the eight known species of themelanogaster species subgroup ofDrosophila. The restriction maps ofD. simulans, D. mauritiana, D. sechellia, D. erecta, andD. orena are shown to have basically the restriction map ofD. melanogaster, whereas the maps ofD. teissieri andD. yakuba were more difficult to align. However, the basic amount of DNA and sequence arrangement appear to have been conserved in these species. A small deletion of varying length (65–200 bp) is found in a repeated sequence of the central transcribed region ofD. melanogaster, D. simulans, andD. erecta. Restriction site mapping indicated that thedec-1 gene is highly conserved in themelanogaster species subgroup. However, sequence comparison revealed that the amount of nucleotide and amino acid substitution in the repeated region is much larger than in the 5 translated region. The 5 flanking region showed noticeable restriction site polymorphisms between species. Based on calculations from the restriction maps a dendrogram was derived that supports earlier published phylogenetic relationships within themelanogaster species subgroup except that theerecta-orena pair is placed closer to themelanogaster complex than toD. teissieri andD. yakuba.  相似文献   

3.

Background

Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analysing the genomic organization of resistance genes in this crop.

Results

With searches for Pfam domains and manual curation of the cassava gene annotations, we identified 228 NBS-LRR type genes and 99 partial NBS genes. These represent almost 1% of the total predicted genes and show high sequence similarity to proteins from other plant species. Furthermore, 34 contained an N-terminal toll/interleukin (TIR)-like domain, and 128 contained an N-terminal coiled-coil (CC) domain. 63% of the 327 R genes occurred in 39 clusters on the chromosomes. These clusters are mostly homogeneous, containing NBS-LRRs derived from a recent common ancestor.

Conclusions

This study provides insight into the evolution of NBS-LRR genes in the cassava genome; the phylogenetic and mapping information may aid efforts to further characterize the function of these predicted R genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1554-9) contains supplementary material, which is available to authorized users.  相似文献   

4.
The activity levels of alcohol dehydrogenase and -glycerophosphate dehydrogenase were compared among nine species of Drosophila representing three phylogenetic groups. For any given life stage, interspecific variability in activity level was much greater for ADH than for -GPDH. Patterns of ontogenetic expression of enzyme activity were also much more variable among species for ADH than for -GPDH. These results are consistent with the interpretation that -GPDH is involved with a relatively uniform adaptive function among species, whereas ADH levels may reflect variable adaptive capabilities. There is a significant correlation between ADH activities and survivorship on alcohol-treated media for these nine species.This research was supported by Contract AT(04-3)-34 200 with ERDA. The authors are supported by an NIH training grant in genetics.  相似文献   

5.
Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions.In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. Coli 54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. Coli 70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one a factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding.The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins.Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available. These studies should provide guides for extrapolation of results obtained with one response regulator to others as well as for the design of future structure/function analyses. Correspondence to: M.H. Saier, Jr.  相似文献   

6.
The 1-, 2-, and 3-tubulin genes have been mapped by in situ hybridization on the polytene chromosomes of 11 selected species (15 strains) belonging to theDrosophila montium subgroup. Although the hybridization pattern among the strains of the same species does not differ, this pattern is significantly different among the species. The -tubulin genes in themontium subgroup seem to be organized in a cluster, or in a semi-cluster, or are completely dispersed. The clustered arrangement is found in the North-Oriental sibling speciesD. auraria, D. triauraria, andD. quadraria. The semi-clustered arrangement, wherein the 1 and 2 genes are located at the same locus while 3 is at a different one, appears in the South-Oriental speciesD. bicomuta, D. serrata, andD. birchii, as well as in the Afrotropical speciesD. diplacantha andD. seguyi. The complete separation of the genes is observed in the Indian speciesD. kikkawai andD. jambulina and in the Afrotropical speciesD. vulcana. Based on the above results, a possible mode of evolution of the -tubulin genes in the montium subgroup is attempted. In addition, phylogenetic relationships among themontium species are discussed. Correspondence to: Z.G. Scouras  相似文献   

7.
Cellulose synthase genes (CesAs) encode a broad range of processive glycosyltransferases that synthesize (14)-D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four `U-motifs' with conserved aspartate residues and a QxxRW motif that are essential for substrate binding and catalysis. In higher plants, the domain structure includes two plant-specific regions, one that is relatively conserved and a second, so-called `hypervariable region' (HVR). Analysis of the phylogenetic relationships among members of the CesA multi-gene families from two grass species,Oryza sativa and Zea mays, with Arabidopsis thaliana and other dicotyledonous species reveals that the CesA genes cluster into several distinct sub-classes. Whereas some sub-classes are populated by CesAs from all species, two sub-classes are populated solely by CesAs from grass species. The sub-class identity is primarily defined by the HVR, and the sequence in this region does not vary substantially among members of the same sub-class. Hence, we suggest that the region is more aptly termed a `class-specific region' (CSR). Several motifs containing cysteine, basic, acidic and aromatic residues indicate that the CSR may function in substrate binding specificity and catalysis. Similar motifs are conserved in bacterial cellulose synthases, the Dictyostelium discoideum cellulose synthase, and other processive glycosyltransferases involved in the synthesis of non-cellulosic polymers with (14)-linked backbones, including chitin, heparan, and hyaluronan. These analyses re-open the question whether all the CesA genes encode cellulose synthases or whether some of the sub-class members may encode other non-cellulosic (14)-glycan synthases in plants. For example, the mixed-linkage (13)(14)-D-glucan synthase is found specifically in grasses and possesses many features more similar to those of cellulose synthase than to those of other -linked cross-linking glycans. In this respect, the enzymatic properties of the mixed-linkage -glucan synthases not only provide special insight into the mechanisms of (14)-glycan synthesis but may also uncover the genes that encode the synthases themselves.  相似文献   

8.

Background

Much progress has been made in understanding the 3D structure of proteins using methods such as NMR and X-ray crystallography. The resulting 3D structures are extremely informative, but do not always reveal which sites and residues within the structure are of special importance. Recently, there are indications that multiple-residue, sub-domain structural relationships within the larger 3D consensus structure of a protein can be inferred from the analysis of the multiple sequence alignment data of a protein family. These intra-dependent clusters of associated sites are used to indicate hierarchical inter-residue relationships within the 3D structure. To reveal the patterns of associations among individual amino acids or sub-domain components within the structure, we apply a k-modes attribute (aligned site) clustering algorithm to the ubiquitin and transthyretin families in order to discover associations among groups of sites within the multiple sequence alignment. We then observe what these associations imply within the 3D structure of these two protein families.

Results

The k-modes site clustering algorithm we developed maximizes the intra-group interdependencies based on a normalized mutual information measure. The clusters formed correspond to sub-structural components or binding and interface locations. Applying this data-directed method to the ubiquitin and transthyretin protein family multiple sequence alignments as a test bed, we located numerous interesting associations of interdependent sites. These clusters were then arranged into cluster tree diagrams which revealed four structural sub-domains within the single domain structure of ubiquitin and a single large sub-domain within transthyretin associated with the interface among transthyretin monomers. In addition, several clusters of mutually interdependent sites were discovered for each protein family, each of which appear to play an important role in the molecular structure and/or function.

Conclusions

Our results demonstrate that the method we present here using a k- modes site clustering algorithm based on interdependency evaluation among sites obtained from a sequence alignment of homologous proteins can provide significant insights into the complex, hierarchical inter-residue structural relationships within the 3D structure of a protein family.
  相似文献   

9.
10.
The nucleotide sequences of the D1/D2 domains of large subunit (26S) ribosomal DNA for 76 strains of 46 species of pathogenic dematiaceous fungi and related taxa were determined. Intra-species sequence diversity of medically important dematiaceous fungi including Phialophora verrucosa, Fonsecaea pedrosoi, Fonsecaea compacta, Cladophialophora carrionii, Cladophialophora bantiana, Exophiala dermatitidis, Exophiala jeanselmei, Exophiala spinifera, Exophiala moniliae, and Hortaea werneckii were extremely small; as few as 0 changes were detected in C. bantiana, Fonsecaea and Exophiala species, 1 bp in C. carrionii and H. werneckii, and 2 bp in P. verrucosa. Inter-species nucleotide diversity between most species was higher. These data suggested that the D1/D2 domain is sufficiently variable for identification of pathogenic dematiaceous fungi and relevant species. The phylogenetic trees constructed from the sequence data revealed that most human pathogenic species formed a single cluster and that Cladosporium and Phialophora species were distributed polyphyletically into several clusters.  相似文献   

11.
The phylogenetic positions of the families Campynemataceae and Corsiaceae within the order Liliales remains unclear. To date, molecular data from the plastid genome of Corsiaceae has been obtained exclusively from Arachnitis, for which alignment and phylogenetic inference has proved difficult. The extent of gene conservation among mycoheterotrophic species within Corsiaceae remains unknown. To clarify the phylogenetic position of Campynemataceae and Corsiaceae within Liliales, functional plastid-coding genes of species representing both families have been analyzed. Examination of two phylogenetic data sets of plastid genes employing parsimony, maximum-likelihood, and Bayesian inference methods strongly supported both families forming a basal clade to the remaining taxa of Liliales. The first data set consists of five functional plastid-encoded genes (matK, rps7, rps2, rps19, and rpl2) sequenced from Corsia dispar (Corsiaceae). The data set included 31 species representing all families within Liliales, as well as selected orders that are related closely to Liliales (10 outgroup species from Asparagales, Dioscoreales, and Pandanales). The second phylogenetic analysis was based on 75 plastid genes. This data set included 18 species from Liliales, representing major clades within the order, and 10 outgroup species from Asparagales, Dioscoreales, and Pandanales. In this latter data set, Campynemataceae was represented by 60 plastid-encoded genes sequenced from herbarium material of Campynema lineare. A large proportion of the plastid genome of C. dispar was also sequenced and compared to the plastid genomes of photosynthetic plants within Liliales and mycoheterotrophic plants within Asparagales to explore plastid genome reduction. The plastid genome of C. dispar is in the advanced stages of reduction, which signifies its high dependency on mycorrhizal fungi and is suggestive of a loss in photosynthetic ability. Functional plastid genes found in C. dispar may be applicable to other species in Corsiaceae, which will provide a basis for in-depth molecular analyses of interspecies relationships within the family, once molecular data from other members become available.  相似文献   

12.

Background

Most studies inferring species phylogenies use sequences from single copy genes or sets of orthologs culled from gene families. For taxa such as plants, with very high levels of gene duplication in their nuclear genomes, this has limited the exploitation of nuclear sequences for phylogenetic studies, such as those available in large EST libraries. One rarely used method of inference, gene tree parsimony, can infer species trees from gene families undergoing duplication and loss, but its performance has not been evaluated at a phylogenomic scale for EST data in plants.

Results

A gene tree parsimony analysis based on EST data was undertaken for six angiosperm model species and Pinus, an outgroup. Although a large fraction of the tentative consensus sequences obtained from the TIGR database of ESTs was assembled into homologous clusters too small to be phylogenetically informative, some 557 clusters contained promising levels of information. Based on maximum likelihood estimates of the gene trees obtained from these clusters, gene tree parsimony correctly inferred the accepted species tree with strong statistical support. A slight variant of this species tree was obtained when maximum parsimony was used to infer the individual gene trees instead.

Conclusion

Despite the complexity of the EST data and the relatively small fraction eventually used in inferring a species tree, the gene tree parsimony method performed well in the face of very high apparent rates of duplication.
  相似文献   

13.
The sequence of the mitochondrial COII gene has been widely used to estimate phylogenetic relationships at different taxomonic levels across insects. We investigated the molecular evolution of the COII gene and its usefulness for reconstructing phylogenetic relationships within and among four collembolan families. The collembolan COII gene showed the lowest A + T content of all insects so far examined, confirming that the well-known A + T bias in insect mitochondrial genes tends to increase from the basal to apical orders. Fifty-seven percent of all nucleotide positions were variable and most of the third codon positions appeared free to vary. Values of genetic distance between congeneric species and between families were remarkably high; in some cases the latter were higher than divergence values between other orders of insects. The remarkably high divergence levels observed here provide evidence that collembolan taxa are quite old; divergence levels among collembolan families equaled or exceeded divergences among pterygote insect orders. Once the saturated third-codon positions (which violated stationarity of base frequencies) were removed, the COII sequences contained phylogenetic information, but the extent of that information was overestimated by parsimony methods relative to likelihood methods. In the phylogenetic analysis, consistent statistical support was obtained for the monophyly of all four genera examined, but relationships among genera/families were not well supported. Within the genus Orchesella, relationships were well resolved and agreed with allozyme data. Within the genus Isotomurus, although three pairs of populations were consistently identified, these appeared to have arisen in a burst of evolution from an earlier ancestor. Isotomurus italicus always appeared as basal and I. palustris appeared to harbor a cryptic species, corroborating allozyme data. Received: 12 January 1996 / Accepted: 10 August 1996  相似文献   

14.
Haynes MR  Wu GE 《Immunogenetics》2004,56(7):470-479
The T-cell receptor (TCR) and loci are particularly interesting because of their unique genomic structure, in that the gene segments for each locus are interspersed. The origin of this remarkable gene segment arrangement is obscure. In this report, we investigated the evolution of the TCR and variable loci and their respective recombination signal sequences (RSSs). Our phylogenetic analyses divided the and variable gene segments into two major groups each with distinguishing motifs in both the framework and complementarity determining regions (CDRs). Sequence analyses revealed that TCR variable segments share similar CDR2 sequences with immunoglobulin light chain variable segments, possibly revealing similar evolutionary histories. Maximum likelihood analysis of the region on Chromosome 14q11.2 containing the loci revealed two possible ancestral TCR / variable segments, TRDV2 and TRAV1-1/1-2, respectively. Maximum parsimony revealed different evolutionary patterns between the variable segment and RSS of the same variable gene arguing for dissimilar evolutionary origins. Two models could account for this difference: a V(D)J recombination activity involving embedded heptamer-like motifs in the germline genome, or, more plausibly, an unequal sister chromatid crossing-over. Either mechanism would have resulted in increased diversity for the adaptive immune system.  相似文献   

15.
Comparative analysis of a group of closely related Drosophila species (D. virilis, D. lummei, D. novamexicana, D. americana texana, D. flavomontana, D. montana, D. borealis, D. lacicola, D. littoralis, D. kanekoi, and D. ezoana) was conducted based on an incomplete sequence of gene Ras1. The pattern of the relationships among the species corresponded to that expected from analysis of morphological and cytogenetic characters. Statistical data favoring neutrality of the substitutions examined in the Ras1 gene are presented. This character of the gene Ras1 evolution confers more reliability to reconstruction of phylogenetic relationships among closely related species. The resultant tree for main phylads of the group is as follows: D. virilis (D. lummei, D. montana, D. ezoana).  相似文献   

16.
The molecular structure of the lampbrush loopforming fertility gene nooses from the short arm of the Y chromosome of Drosophila hydei is described on the basis of cloned DNA sequences which are characteristic for the sequence organization in the lampbrush loop. Y chromosomal lampbrush loops are organized into tandem repeat clusters of loop-specific repetitive DNA sequences and in interspersed repetitive DNA sequences with homologies elsewhere in the genome. In this paper, the basic properties of a repeat unit of the tandemly repeated sequence family ay1 are described. Moreover, it is shown that a loop contains several different domains carrying repeat clusters of the same repeated DNA family but with divergent sequence character. One of these clusters is characterized by an internal duplication of the basic repeat unit. We propose that the tandem repeat DNA family ay1 forms a frame of the lampbrush loop which is required for structural and functional reasons.  相似文献   

17.
H Zhang  A Rokas  JC Slot 《PloS one》2012,7(7):e41903

Background

Dermatophyte fungi of the family Arthrodermataceae (Eurotiomycetes) colonize keratinized tissue, such as skin, frequently causing superficial mycoses in humans and other mammals, reptiles, and birds. Competition with native microflora likely underlies the propensity of these dermatophytes to produce a diversity of antibiotics and compounds for scavenging iron, which is extremely scarce, as well as the presence of an unusually large number of putative secondary metabolism gene clusters, most of which contain non-ribosomal peptide synthetases (NRPS), in their genomes. To better understand the historical origins and diversification of NRPS-containing gene clusters we examined the evolution of a variable locus (VL) that exists in one of three alternative conformations among the genomes of seven dermatophyte species.

Results

The first conformation of the VL (termed VLA) contains only 539 base pairs of sequence and lacks protein-coding genes, whereas the other two conformations (termed VLB and VLC) span 36 Kb and 27 Kb and contain 12 and 10 genes, respectively. Interestingly, both VLB and VLC appear to contain distinct secondary metabolism gene clusters; VLB contains a NRPS gene as well as four porphyrin metabolism genes never found to be physically linked in the genomes of 128 other fungal species, whereas VLC also contains a NRPS gene as well as several others typically found associated with secondary metabolism gene clusters. Phylogenetic evidence suggests that the VL locus was present in the ancestor of all seven species achieving its present distribution through subsequent differential losses or retentions of specific conformations.

Conclusions

We propose that the existence of variable loci, similar to the one we studied, in fungal genomes could potentially explain the dramatic differences in secondary metabolic diversity between closely related species of filamentous fungi, and contribute to host adaptation and the generation of metabolic diversity.  相似文献   

18.
The endpoints of the large inverted repeat (IR) of chloroplast DNA in flowering plants differ by small amounts between species. To quantify the extent of this movement and define a possible mechanism for IR expansion, DNA sequences across the IR—large single-copy (IR-LSC) junctions were compared among 13Nicotiana species and other dicots. In mostNicotiana species the IR terminates just upstream of, or somewhere within, the 5 portion of therps19 gene. The truncated copy of this gene,rps19, varies in length even between closely related species but is of constant size within a single species. InNicotiana, six differentrps19 structures were found. A phylogenetic tree ofNicotiana species based on restriction site data shows that the IR has both expanded and contracted during the evolution of this genus. Gene conversion is proposed to account for these small and apparently random IR expansions. A large IR expansion of over 12 kb has occurred inNicotiana acuminata. The new IR-LSC junction in this species lies within intron 1 of theclpP gene. This rearrangement occurred via a double-strand DNA break and recombination between poly (A) tracts inclpP intron 1 and upstream ofrps19. Nicotiana acuminata chloroplast DNA contains a molecular fossil of the IR-LSC junction that existed prior to this dramatic rearrangement.  相似文献   

19.
Phylogenetic studies suggest that mobile element families are unstable components of the Drosophila genome. Two examples of immobilization of a transposable element family are presented here: as judged by their constant genomic organization among unrelated strains, the F and I element families have been respectively immobilized for a long time in D. simulans and in the reactive D. melanogaster strains (these are the laboratory strains which escaped the recent I invasion of D. melanogaster natural populations). All the elements of these defective families are located in the heterochromatic portion of the genome. Moreover, most if not all of the heterochromatic sequences into which the defective I elements are embedded are themselves non-mobile members of various nomadic families such as mdg 4, 297, 1731, F and Doc. These results are discussed with special emphasis on the possible nomadic origin of heterochromatin components and on the mechanisms of evolutionary turnover of the transposable element families.  相似文献   

20.
The zebrafish (Brachydanio rerio) offers many advantages for immunological and immunogenetic research and has the potential for becoming one of the most important nonmammalian vertebrate research models. With this in mind, we initiated a systematic study of the zebrafish major histocompatibility complex (Mhc) genes. In this report, we describe the cloning and characteristics of the zebrafish class I A genes coding for the chains of the heterodimer and thus complete the identification of all four classes and subclasses of the Mhc in this species. We describe the full class I cDNA sequence as well as the exon-intron organization of the class I A genes, including intron sequences. We identify three families of class I A genes which we designate Bree-UAA,-UBA, and -UCA. The three families originated about the time of the divergence of cyprinid and salmonid fishes. All three families are members of an ancient lineage that diverged from another, older lineage also represented in cyprinid fishes before the radiation of teleost orders. The fish class I A genes therefore evolve differently from mammalian class I A genes, in which the establishment of lineages and families mostly postdates the divergence of orders.The nucleotide sequence data reported in this Papershave been submitted to the EMBL/GenBank nucleotide sequence databases and have been assigned the accession numbers Z46776–Z46779  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号