首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.  相似文献   

2.
Components of centrosomes are those among cellular proteins that are phosphorylated at the transition from interphase to mitosis. Using an anti-phosphoprotein antibody (CHO3) directed against isolated mitotic CHO spindles, we identified a 225-kDa centrosomal phosphocomponent in mitotic CHO cells and in cleaving sea urchin eggs. The 225-kDa protein is tightly attached to the centrosome, which allowed us to separate it from other spindle-associated factors by high salt extraction. Phosphorylation of the 225-kDa protein occurred during mitosis. This was shown by isotope labeling on gels as well as by visualization of thiophosphorylated centrosomes with an anti-thiophosphoprotein antibody (M. Cyert, T. Scherson, and M. W. Kirschner, 1988, Dev. Biol. 129, 209) after preincubation with ATP-gamma-S in vivo and in vitro. Mitotic spindles isolated from CHO cells retained their ability to phosphorylate the centrosomal component, whereas sea urchin spindles did not, possibly due to loss or inactivation of protein kinase(s) during spindle isolation. The enzyme associated with isolated CHO spindles was extractable by high salt treatment and was capable of phosphorylating many spindle components, including the 225-kDa centrosomal protein of CHO cells and sea urchin embryos. Such high salt extracts contain protein kinases, including cell cycle control protein kinase p34cdc2, suggesting that the enzyme responsible for centrosomal phosphorylation could be p34cdc2 or other downstream mitotic kinases activated by the action of p34cdc2.  相似文献   

3.
Alterations in the expression and activity of the centrosomal kinase, Aurora-A/STK15, affect genomic stability, disrupt the fidelity of centrosome duplication, and induce cellular transformation. A mitotic spindle-associated protein, astrin/DEEPEST, was identified as an Aurora-A interacting protein by a two-hybrid screen. Astrin and Aurora-A co-express at mitosis and co-localize to mitotic spindles. RNAi-mediated depletion of astrin abolishes the localization of Aurora-A on mitotic spindles and leads to a moderate mitotic cell cycle delay, which resembles the mitotic arrest phenotypes in siAurora-A treated cells. However, depletion of Aurora-A does not affect astrin localization, and co-depletion of both astrin and Aurora-A causes a mitotic arrest phenotype similar to depletion of siAurora-A alone. These results suggest that astrin acts upstream of Aurora-A to regulate its mitotic spindle localization.  相似文献   

4.
Aurora-A is known to be a mitotic kinase required for spindle assembly. We constructed a human stable cell-line in which Aurora-A, histone H3 and importinalpha were differentially expressed as fusions to green, cyan, and red fluorescent proteins (GFP, CFP and DsRed). In interphase cells, GFP-Aurora-A was localized in the centrosome. Its molecular behavior in living mitotic cells was extensively analyzed by an advanced timelapse image analyzing system. In G2 phase, duplicated centrosomal dots of Aurora-A separated and moved to the opposite poles, a process requiring 18 min. In prophase, the Aurora-A dots approached closer and the nuclear membrane of DsRed-importinalpha beneath them became thick and invaginated, resulting in a "dumb-bell" shaped nucleus with condensed chromatin. As the importinalpha membrane further shrank and disappeared, the condensed chromatin was excluded from the nucleus and the Aurora-A dots grew rapidly into a spindle-like structure. Congression of mitotic chromosomes continued for 20-50 min until they were properly aligned at the spindle equator and then the sister chromatids started to segregate, taking 4-6 min for them to reach the poles. An importinalpha membrane reappeared around the surface of chromatin 10 min after anaphase onset. Aurora-A gradually decreased in size in telophase and returned to the surface of the newly formed small sister nuclei. These observations showed that the morphological change of Aurora-A was cooperated with the breakdown and reformation of nuclear membrane. Immunostaining with anti-alpha or gamma-tubulin further indicated that Aurora-A was involved in the formation of mitotic spindle in metaphase as well as the subsequent chromosome movement in anaphase.  相似文献   

5.
Aurora-A and Plk1 are centrosomal kinases involved in centrosome maturation and spindle assembly. The microtubule-binding protein TPX2 interacts with, and activates, Aurora-A. Here we have used RNA interference-mediated inactivation to investigate whether Aurora-A, Plk1 and TPX2 act independently or are part of one signalling cascade in spindle formation in mammalian cells. We have identified both specific, and overlapping, roles of each single regulator in centrosome maturation and spindle formation: (i) Aurora-A and TPX2 are required for centriole cohesion and spindle bipolarity; (ii) TPX2, besides its known role in microtubule organization, is also involved in centrosome maturation; (iii) finally, Plk1 controls the localization of Aurora-A to centrosomes, as well as TPX2 recruitment to microtubules. Based on these results therefore a hierachical functional relation between Plk1 and the Aurora-A/TPX2 pathway emerges.  相似文献   

6.
Phosphorylation is one of the key mechanisms that regulate centrosome biogenesis, spindle assembly, and cell cycle progression. However, little is known about centrosome-specific phosphorylation sites and their functional relevance. Here, we identified phosphoproteins of intact Drosophila melanogaster centrosomes and found previously unknown phosphorylation sites in known and unexpected centrosomal components. We functionally characterized phosphoproteins and integrated them into regulatory signaling networks with the 3 important mitotic kinases, cdc2, polo, and aur, as well as the kinase CkIIβ. Using a combinatorial RNA interference (RNAi) strategy, we demonstrated novel functions for P granule, nuclear envelope (NE), and nuclear proteins in centrosome duplication, maturation, and separation. Peptide microarrays confirmed phosphorylation of identified residues by centrosome-associated kinases. For a subset of phosphoproteins, we identified previously unknown centrosome and/or spindle localization via expression of tagged fusion proteins in Drosophila SL2 cells. Among those was otefin (Ote), an NE protein that we found to localize to centrosomes. Furthermore, we provide evidence that it is phosphorylated in vitro at threonine 63 (T63) through Aurora-A kinase. We propose that phosphorylation of this site plays a dual role in controlling mitotic exit when phosphorylated while dephosphorylation promotes G(2)/M transition in Drosophila SL2 cells.  相似文献   

7.
Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. LIM kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, is involved in the mitotic process through inactivating phosphorylation of cofilin. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with γ-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one another’s function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation.  相似文献   

8.
Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. LIM kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, is involved in the mitotic process through inactivating phosphorylation of cofilin. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with γ-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one other''s function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation.Key words: LIMK1, Aurora A, mitotic spindle, phosphorylation  相似文献   

9.
Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.  相似文献   

10.
Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.  相似文献   

11.
Summary— Several studies have shown that kinases and phosphatases can interact with the centrosome during interphase and mitosis suggesting that centrosomal components might be the targets of these enzymes. The association of the cAMP-dependent protein kinase type II and the mitotic kinase p34cdc2 with centrosomes from human lymphoblast cells has previously been shown (Keryer et al, 1993, Exp Cell Res 204, 230–240; Bailly et al, 1989, EMBO J 8, 3985–3995). In this paper we demonstrate that isolated centrosomes are able to phosphorylate a few number of centrosomal proteins (Mr 230–220000; 135000 and 50000) and also H1 histone. The phosphorylation of H1-histone is cell cycle dependent and modulated by phosphatases. The use of kinase and phosphatase inhibitors and the addition of the catalytic subunit of cAMP-dependent kinase or of cyclinB-p34cdc2 kinase showed that both kinases phosphorylate the same centrosomal substrates. In addition two centrosomal proteins (Mr 100000 and 37000) were phosphorylated only by p34cdc2 kinase. Although the low amount of centrosomal proteins precluded a full characterization of these substrates we discuss the identity of the major centrosomal phosphoproteins by comparison with proteins known to associate with microtubule-organizing centres or mitotic spindles. Our results raise also the intriguing possibility that the cAMP-dependent protein kinase could be regulated by the mitotic kinase at the entry of mitosis.  相似文献   

12.
During G2 phase of cell cycle, centrosomes function as a scaffold for activation of mitotic kinases. Aurora-A is first activated at late G2 phase at the centrosome, facilitates centrosome maturation, and induces activation of cyclin B-Cdk1 at the centrosome for mitotic entry. Although several molecules including HEF1 and PAK are implicated in centrosomal activation of Aurora-A, signaling pathways leading to Aurora-A activation at the centrosome, and hence mitotic commitment in vertebrate cells remains largely unknown. Here, we have used Clostridium difficile toxin B and examined the role of Rho GTPases in G2/M transition of HeLa cells. Inactivation of Rho GTPases by the toxin B treatment delayed by 2 h histone H3 phosphorylation, Cdk1/cyclin B activation, and Aurora-A activation. Furthermore, PAK activation at the centrosome that was already present before the toxin addition was significantly attenuated for 2 h by the addition of toxin B, and HEF1 accumulation at the centrosome that occurred in late G2 phase was also delayed. These results suggest that Rho GTPases function in G2/M transition of mammalian cells by mediating multiple signaling pathways converging to centrosomal activation of Aurora-A.  相似文献   

13.
The cDNA encoding the protein kinase pEg2 was originally cloned through a differential screening performed during the early development of Xenopus laevis. pEg2 orthologues were found in various organisms and were classified in a new family of oncogenic mitotic protein kinases named 'aurora/Ipl1-related kinases' after the Drosophila melanogaster gene aurora and the Saccharomyces cerevisiae gene Ipl1. The catalytic activity of pEg2 is necessary for the mitotic microtubule spindle formation in Xenopus laevis egg extracts. The addition of a dominant negative form of pEg2 to in vitro spindle assembly assays leads to monopolar spindles generated by a defect of centrosome separation. In Xenopus cultured cells, pEg2 was confined around the pericentriolar material once centrosomes were duplicated. The centrosome localization does not depend on the presence of microtubules. However, in vitro, the protein binds to taxol-stabilized microtubules independently of its kinase activity. During mitosis the location of the protein changes, in metaphase the kinase localizes on the microtubules at the poles of the mitotic spindle whereas it is not present on astral microtubules. This localization persists until the segregation of the chromosomes is completed. The presence of the kinase on the spindle may reveal another yet unknown function.  相似文献   

14.
T-1 induces modifications in the shape of the centrosome at division in fertilized eggs of the North American sea urchin, Lytechinus pictus. Phase contrast microscopy observations of mitotic apparatus isolated from T-1-treated (1.7-8.5 microM) eggs at first division shows that the centrosomes already begin to spread or to separate by prophase and that the mitotic spindle is barrel-shaped. When eggs are fertilized with sperm that have been preteated with T-1, the centrosomes become flattened; the spindles are of normal length. Immunofluorescence microscopy using an anti-centrosomal monoclonal antibody reveals that T-1 modifies the structure of the centrosome so that barrel-shaped spindles with broad centrosomes are observed at metaphase, rather than the expected focused poles and fusiform spindle. Higher concentrations of T-1 induce fragmentation of centrosomes, causing abnormal accumulation of microtubules in polar regions. These results indicate that T-1 directly alters centrosomal configuration from a compact structure to a flattened or a spread structure. T-1 can be classified as a new category of mitotic drugs that may prove valuable in dissecting the molecular nature of centrosomes.  相似文献   

15.
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.  相似文献   

16.
In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.  相似文献   

17.
vAL-1, a novel polysaccharide lyase encoded by chlorovirus CVK2   总被引:1,自引:0,他引:1  
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubule and the kinetochore. Our recent ultrastructural studies demonstrated a dynamic distribution of TTK, from the kinetochore to the centrosome, as cell enters into anaphase. Here, we show that a centrosomal protein TACC2 is phosphorylated in mitosis by TTK signaling pathway. TACC2 was pulled down by wild type TTK but not kinase death mutant, suggesting the potential phosphorylation-mediated interaction between these two proteins. Our immunofluorescence studies revealed that both TTK and TACC2 are located to the centrosome. Interestingly, expression of kinase death mutant of TTK eliminated the centrosomal localization of TACC2 but not other centrosomal proteins such as gamma-tubulin and NuMA, a phenotype seen in TTK-depleted cells. In these centrosomal TACC2-liberated cells, chromosomes were lagging and mis-aligned. In addition, the distance between two centrosomes was markedly reduced, suggesting that centrosomal TACC2 is required for mitotic spindle maintenance. The inter-relationship between TTK and TACC2 established here provides new avenue to study centrosome and spindle dynamics underlying cell divisional control.  相似文献   

18.
BACKGROUND: During asymmetric cell division in the Drosophila nervous system, Numb segregates into one of two daughter cells where it is required for the establishment of the correct cell fate. Numb is uniformly cortical in interphase, but in late prophase, the protein concentrates in the cortical area overlying one of two centrosomes in an actin/myosin-dependent manner. What triggers the asymmetric localization of Numb at the onset of mitosis is unclear. RESULTS: We show here that the mitotic kinase Aurora-A is required for the asymmetric localization of Numb. In Drosophila sensory organ precursor (SOP) cells mutant for the aurora-A allele aurA(37), Numb is uniformly localized around the cell cortex during mitosis and segregates into both daughter cells, leading to cell fate transformations in the SOP lineage. aurA(37) mutant cells also fail to recruit Centrosomin (Cnn) and gamma-Tubulin to centrosomes during mitosis, leading to spindle morphology defects. However, Numb still localizes asymmetrically in cnn mutants or after disruption of microtubules, indicating that there are two independent functions for Aurora-A in centrosome maturation and asymmetric protein localization during mitosis. Using photobleaching of a GFP-Aurora fusion protein, we show that two rapidly exchanging pools of Aurora-A are present in the cytoplasm and at the centrosome and might carry out these two functions. CONCLUSIONS: Our results suggest that activation of the Aurora-A kinase at the onset of mitosis is required for the actin-dependent asymmetric localization of Numb. Aurora-A is also involved in centrosome maturation and spindle assembly, indicating that it regulates both actin- and microtubule-dependent processes in mitotic cells.  相似文献   

19.
Although HEF1 has a well-defined role in integrin-dependent attachment signalling at focal adhesions, it relocalizes to the spindle asters at mitosis. We report here that overexpression of HEF1 causes an increase in centrosome numbers and multipolar spindles, resembling defects induced by manipulation of the mitotic regulatory kinase Aurora-A (AurA). We show that HEF1 associates with and controls activation of AurA. We also show that HEF1 depletion causes centrosomal splitting, mono-astral spindles and hyperactivation of Nek2, implying additional action earlier in the cell cycle. These results provide new insight into the role of an adhesion protein in coordination of cell attachment and division.  相似文献   

20.
The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414–530) and CC2 (aa 530–630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号