首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of suprachiasmatic and control lesions on the circadian rhythms of locomotor activity and body temperature were studied in golden hamsters (Mesocricetus auratus) maintained in constant light as well as constant darkness. Large suprachiasmatic lesions, but not control lesions, eliminated circadian rhythmicity in locomotor activity as well as in body temperature. Analysis of the robustness of the rhythms of locomotor activity and body temperature in unlesioned and lesioned animals suggests that, because body temperature rhythmicity is more robust than locomotor rhythmicity, lesions that spare a small number of suprachiasmatic cells might abolish the latter but not the former. Our results do not support the hypothesis that the body temperature rhythm is controlled by a circadian pacemaker distinct from the main pacemaker located in the suprachiasmatic nuclei.  相似文献   

2.
Abstract

To test the hypothesis that an oscillator located outside the suprachiasmatic nuclei (SCN) controls the circadian rhythm of body temperature, we conducted a study with 14 blinded rats, 10 of which receiving a SCN lesion. Body temperature was automatically and continuously recorded for about one month by intraperitoneal radio transmitters. Food intake, drinking and locomotor activity were also recorded. Periodograms revealed that 3 rats with histologically verified total bilateral SCN lesions did not exhibit any circadian rhythmicity. The 7 other rats appeared to have partial lesions. They showed shortening of period and severe amplitude reduction in all functions. Thus, no support was found for the hypothesis of a separate circadian ‘temperature oscillator’ located outside the SCN. Nevertheless, after large partial lesions body temperature showed more persistency than some of the other behavioral rhythms.

Ultradian rhythms in temperature persisted after partial and total lesions. Other functions showed parallel ultradian rhythms. In intact rats the ultradian peaks were restricted predominantly to the subjective night. After total lesions these peaks became more or less homogeneously distributed in time but more heterogeneously after partial lesions. So the SCN plays a role in the temporal structure of ultradian rhythms but does not generate them. Non‐24‐hour actograms showed instabilities of period and phase of ultradian rhythms. Intact and lesioned rats were similar with respect to the mean (about 3.5 hrs) and standard deviation (about 1.5 hrs) of ultradian periods in temperature. These features indicate that a mechanism outside the SCN is underlying ultradian rhythmicity, capable of generating short‐term oscillations. Two approaches, homeostatic sleep‐wake relaxation oscillations and multiple circadian oscillators, are discussed.  相似文献   

3.
Torpor-like circadian variations of core temperature are well documented for suckling-age Zucker rat pups. To determine (1) whether this juvenile circadian rhythm is as strongly expressed in other rat strains, and (2) whether a similar rhythm is expressed in rabbit pups, we recorded core temperature and metabolic rate of artificially reared pups. Wistar, Brown Norway, and Long Evans pups were studied for 30 h under moderate cold loads (ambient temperature=28°C) when 9–11 days old, i.e. at the age and ambient temperature for which the rhythm has been most thoroughly characterized in Zucker rats. Chinchilla bastard rabbit pups were studied under similar conditions when they were 3–8 days old, the youngest age at which the rhythm can be easily detected in rats. Rat pups of each strain showed clear circadian rhythms with sharp decreases of core temperature and metabolic rate in subjective morning. Core temperature amplitudes were in the order Wistar < Brown Norway < Zucker < Long Evans strain. In contrast, the rabbit pups maintained stable high levels of core temperature and metabolic rate throughout the day. A torpor-like decrease of core temperature in the morning is thus not a pecularity of the Zucker rat strain but also occurs in other pigmented rat strains, whereas rabbit pups at a similar developmental stage do not show a circadian core temperature rhythm.  相似文献   

4.
The effects of vinorelbine (VRL) on the circadian rhythms in body temperature and locomotor activity were investigated in unrestrained B6D2F1 mice implanted with radio-telemetry transmitters. A single intravenous VRL dose (24 or 12 mg/kg) was given at 7 h after light onset (HALO), a time of high VRL toxicity, and resulted in transient suppression of temperature and activity circadian rhythms in mice kept in light-dark (LD) 12h:12h. Such suppression was dose-dependent. It occurred within 1-5 d after VRL dosing. Recovery of both rhythms was partially complete within 5 d following the high dose and within 2 or 3 d after the low dose and was not influenced by suppression of photoperiodic synchronization by housing in continuous darkness. Moreover, VRL induced a dose-dependent relative decrease in amplitude and phase shift of the temperature circadian rhythm. The mesor and amplitude of the activity rhythm were markedly reduced following the VRL administration. The relevance of VRL dosing time was studied in mice housed in LD 12h:12h. Vinorelbine was injected weekly (20 mg/kg/injection) for 3 wk at 6 or 18 HALO. Vinorelbine treatment ablated the rest-activity and temperature rhythms 3-6 d after each dose, with fewer alterations after VRL dosing at 18 HALO compared to 6 HALO, especially for the body temperature rhythm. There was at least partial recovery 1 wk after dosing, suggesting the weekly schedule of drug treatment is acceptable for therapeutic purposes. Our findings demonstrate that VRL can transiently, yet profoundly, alter circadian clock function. Vinorelbine-induced circadian dysfunction may contribute to the toxicokinetics of this and possibly other anticancer drugs.  相似文献   

5.
Abstract

Because cats with pontile lesions exhibit an abnormal behavior that is under photoperiodic control, and because circadian rhythms are implicated in photoperiodic control mechanisms, an effort was made to detect circadian rhythms in the cat. Cats were isolated from all extraneous stimuli in soundproof chambers for extended periods of time. Photocells were used to monitor activity, eating and drinking in different LD cycles, in constant light at two intensities, and in constant dark. Freerunning circadian rhythms were found in the constant conditions, and entrained nocturnal patterns occurred in most of the LD cycles. The higher intensities of ambient illumination disrupted the freerunning rhythms. The freerunning rhythms were always greater than 24 h, ranging from 24.2 to 25 h. Measurements of food intake of cats living in a large colony room, obtained by weighing the food, revealed that a nocturnal pattern of entrainment was not present in the majority of the cats. Instead, most cats in the colony exhibited a random pattern of eating throughout the light and dark period of the LD cycle. However, the variation among the cats in the colony was considerable, extending from nocturnal to diurnal patterns of eating. A diurnal pattern of human activity was present in the colony and may account for the disruption of a basic nocturnal pattern. The presence of circadian rhythms in the cat leads us to consider the coincidence models for photoperiodic induction as possible explanations of the photoperiodic control of the lesion‐induced abnormal behavior.  相似文献   

6.
Entrainment of the circadian pacemaker to nonphotic stimuli, such as scheduled wheel-running activity, is well characterized in nocturnal rodents, but little is known about activity-dependent entrainment in diurnal or crepuscular species. In the present study, effects of scheduled voluntary wheel-running activity on circadian timekeeping were investigated in Octodon degus, a hystricomorph rodent that exhibits robust crepuscular patterns of wakefulness. When housed in constant darkness, O. degus exhibited circadian rhythms in wheel-running activity and body temperature (Tb) with an average period length (tau) of 23.39 +/- 0.11 h. When wheel running was restricted to a fixed 2-h schedule every 24 h, tau increased on average 0.39 +/- 0.09 h but did not result in steady-state entrainment. Instead, relative coordination between the fixed running schedule and circadian timing was observed. Tau was greatest when scheduled wheel running occurred at CT 20.5 (0.4 h greater than DD baseline tau). Scheduled running activity also influenced Tb waveform symmetry, reflecting concomitant changes in the circadian activity-rest ratio (alpha:rho). Aftereffects of the scheduled wheel-running paradigm were also observed. In 2 animals, tau lengthened from 23.20 and 23.80 h to 24.14 and 24.15 h, respectively, and remained relatively stable for approximately 1 month during the wheel schedule. Although behavioral activity appears to be a weak zeitgeber in this species, these data suggest that nonphotic stimuli can phase delay the circadian pacemaker in O. degus at similar times of the day as in nocturnal hamsters and mice, and in humans.  相似文献   

7.
Circadian rhythms of body temperature, heart rate, and locomotor activity were observed in the unanesthetized and unrestrained Syrian hamsters, Djungarian hamsters and Chinese hamsters, and the differences in these biological characters among the three species of hamster were investigated. In each species, body temperature, heart rate, and locomotor activity in the dark period were higher than those in the light period. Heart rate of Chinese hamsters was higher than that of the others in both the light and dark periods. In addition, it was found that the body temperature of Djungarian hamsters decreased rapidly one time a day. These results show species differences in body temperature, heart rate and locomotor activity of Syrian, Djungarian and Chinese hamsters.  相似文献   

8.
In mammals, the circadian master clock generates daily rhythms of body temperature (T(b)) that act to entrain rhythms in peripheral circadian oscillators. The persistence and function of circadian rhythms during mammalian hibernation is contentious, and the factors that contribute to the reestablishment of rhythms after hibernation are unclear. We collected regular measures of core T(b) (every 34 min) and ambient light conditions (every 30 s) before, during, and following hibernation in free-living male arctic ground squirrels. Free-running circadian T(b) rhythms at euthermic levels of T(b) persisted for up to 10 d in constant darkness after animals became sequestered in their hibernacula in fall. During steady state torpor, T(b) was constant and arrhythmic for up to 13 d (within the 0.19°C resolution of loggers). In spring, males ended heterothermy but remained in their burrows at euthermic levels of T(b) for 22-26 d; patterns of T(b) were arrhythmic for the first 10 d of euthermia. One of four squirrels exhibited a significant free-running T(b) rhythm (τ = 22.1 h) before emergence; this squirrel had been briefly exposed to low-amplitude light before emergence. In all animals, diurnal T(b) rhythms were immediately reestablished coincident with emergence to the surface and the resumption of surface activity. Our results support the hypothesis that clock function is inhibited during hibernation and reactivated by exposure to light, although resumption of extended surface activity does not appear to be necessary to reinitiate T(b) cycles.  相似文献   

9.
Studies on rodents have emphasized that removal of the olfactory bulbs modulates circadian rhythmicity. Using telemetric recordings of both body temperature (Tb) and locomotor activity (LA) in a male nocturnal primate, the gray mouse lemur, the authors investigated the effects of olfactory bulbectomy on (1) the circadian periods of Tb and LA in constant dim light condition, and (2) photic re-entrainment rates of circadian rhythms following 6-h phase shifts of entrained light-dark cycle (LD 12:12). Under free-running condition, bulbectomized males had significantly shorter circadian periods of Tb and LA rhythms than those of control males. However, the profiles of Tb rhythms, characterized by a phase of hypothermia at the beginning of the subjective day, and Tb parameters were not modified by olfactory bulbectomy. Under a light-dark cycle, olfactory bulbectomy significantly modified the expression of daily hypothermia, especially by an increase in the latency to reach minimal daily Tb, suggesting a delayed response to induction of daily hypothermia by light onset. Reentrainment rates following both a 6-h phase advance and a 6-h phase delay of entrained LD were also delayed in bulbectomized males. Olfactory bulbectomy led to significant fragmentation of locomotor activity and increased locomotor activity levels during the resting period. The shortening of circadian periods in bulbectomized males could partly explain the delayed responses to photic stimuli since in control males, the longer the circadian period, the better the response to light entrainment. This experiment shows for the 1st time that olfactory bulbs can markedly modify the circadian system in a primate.  相似文献   

10.
Summary

The effects of narcosis and of telemetry transmitter implantation on core temperature and locomotor activity were investigated in female laboratory mice of various age (3, 15 and 52 weeks old). Following surgery a transient hypothermia was observed. The body temperatures measured 30 min after beginning of narcosis were lower in juvenile and in presenile mice (29.6° ±0.8°C resp. 30.0° ±0.2°C) than in adult animals (31.9° ±0.3°C). The following temperature increase was fastest in juvenile mice. Normal body temperature was reached after 6h 20’ already. Adult and presenile mice needed 8h 30’ resp. 7h 30’. The temperature increase seemed to be independent from activity behaviour of the animals. No substantial differences could be obtained whether the transmitters had room or body temperature before implantation and whether the animals were warmed after surgery by an infrared bulb or not. Probably, the temperature increase depended mainly on the elimination rate of the drug.

Normal circadian core temperature and activity rhythms reappeared on average within 5–6 days in juvenile mice and a little faster in adult (4–5 days) as well as in presenile ones (3–4 days). However, interindividual differences in recovery time were more pronounced than age‐dependent variations.

Circadian core temperature and activity patterns were quite similar in all three age classes investigated. Ontogenetic differences concern, besides changes in daily mean values, mainly a temperature amplitude increasing with age, as well as a high percentage of ultradian components in the activity pattern of juvenile mice compared to older ones.

Telemetry systems are widely used for long‐term measurements of core temperature in laboratory animals (Clement et al., 1989; Refinetti and Menaker, 1992). In our investigations of ontogenetic changes of the circadian temperature and activity rhythms in mice we used an integrated telemetry and data acquisition system (Dataquest, Data Sciences Inc., USA). It comprises implantable wireless transmitters, telemetry receivers, a consolidation matrix and a data acquisition system. The aim of a preliminary study was to analyse the effects of narcosis and transmitter implantation. The time required to recover normal values of body temperature and of locomotor activity as well as normal circadian rhythms was determined, considering also ontogenetic variations.  相似文献   

11.
Core temperature was telemetered from 26 singly-housed adult male inbred Fischer rats standardized in an ambient temperature of 24 ± 1°C, in light from 0600–1800 alternating with darkness (L:D 12:12), with food and water freely available. The rats were operated upon first for bilateral electrolytic lesioning of the suprachiasmatic nucleus (SCN) or by a sham-operation, which consisted of an inserted electrode which neither penetrated into the SCN area nor was activated to produce a lesion. Next, a temperature sensor was implanted intraperitoneally. The telemetered data obtained at 10-min intervals from each rat were analyzed by the least-squares fit of certain trial periods (cosinor methods). A circadian population rhythm persisted in the SCN-lesioned rats which sustained destruction of both SCN (P < 0.01). The amplitude of the circadian temperature rhythm was attenuated(P < 0.01) and the rhythm's acrophase advanced (P < 0.05) from mid-dark to a time near the transition from light to darkness. Unilateral lesions of the suprachiasmatic nuclei altered the circadain amplitude but not the phasing.  相似文献   

12.
13.
Immunoreactive (ir) beta-endorphin (b-END) and dynorphin (DYN) in rat brain and pituitary were measured after food and water deprivation and from brains taken during either day or night. In other rats, eating and drinking were measured following lesions in the arcuate n. Ir-DYN levels are higher in hypothalamus and lower in pituitary at night. Deprivation, particularly water deprivation, increases hypothalamic, day-time ir-DYN. Water deprivation decreases pituitary levels of ir-DYN. Arcuate-lesions, depleting both ir-b-END and ir-DYN, do not modify total daily intake of water or food but does modify circadian rhythmicity of eating and drinking. These data support the conclusion that b-END and DYN are involved in maintaining day-night patterns of eating and drinking.  相似文献   

14.
The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (~5?lux). However, the metabolic effects of short-term (<2 weeks) exposure to DLAN are unspecified. We hypothesized that metabolic alterations would arise in response to just 2 weeks of DLAN. Specifically, we predicted that mice exposed to dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to “internal desynchrony” between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.  相似文献   

15.
Daily schedules of limited access to food, palatable high calorie snacks, water and salt can induce circadian rhythms of anticipatory locomotor activity in rats and mice. All of these stimuli are rewarding, but whether anticipation can be induced by neural correlates of reward independent of metabolic perturbations associated with manipulations of food and hydration is unclear. Three experiments were conducted to determine whether mating, a non-ingestive behavior that is potently rewarding, can induce circadian anticipatory activity rhythms in male rats provided scheduled daily access to steroid-primed estrous female rats. In Experiment 1, rats anticipated access to estrous females in the mid-light period, but also exhibited post-coital eating and running. In Experiment 2, post-coital eating and running were prevented and only a minority of rats exhibited anticipation. Rats allowed to see and smell estrous females showed no anticipation. In both experiments, all rats exhibited sustained behavioral arousal and multiple mounts and intromissions during every session, but ejaculated only every 2-3 days. In Experiment 3, the rats were given more time with individual females, late at night for 28 days, and then in the midday for 28 days. Ejaculation rates increased and anticipation was robust to night sessions and significant although weaker to day sessions. The anticipation rhythm persisted during 3 days of constant dark without mating. During anticipation of nocturnal mating, the rats exhibited a significant preference for a tube to the mating cage over a tube to a locked cage with mating cage litter. This apparent place preference was absent during anticipation of midday mating, which may reflect a daily rhythm of sexual reward. The results establish mating as a reward stimulus capable of inducing circadian rhythms of anticipatory behavior in the male rat, and reveal a critical role for ejaculation, a modulatory role for time of day, and a potential confound role for uncontrolled food intake.  相似文献   

16.
Summary Although pinealectomy or blinding resulted in loss of the clarity of the free-running rhythm of locomotor activity and body temperature and reduced the peak level of circulating melatonin rhythms to approximately a half in intact pigeons, neither pinealectomy nor blinding abolished any of these rhythms. However, when pinealectomy and blinding were combined, the rhythms of locomotor activity and body temperature disappeared in prolonged constant dim light, and melatonin concentration was reduced to the minimum level of detection. In order to examine the role of melatonin in the pigeon's circadian system, it was administered either daily or continuously to PX + EX-pigeons in LLdim. Daily administration of melatonin restored circadian rhythms of locomotor activity which entrained to melatonin injections, but continuous administration did not induce any remarkable change of locomotor activity. These results suggest that melatonin synthesized in the pineal body and the eye contributes to circulating melatonin and its rhythmicity is important for the control of circadian rhythms of locomotor activity and body temperature in the pigeon.Abbreviations LD Light-dark - LLdim constant dim light - LLbright constant bright light - PX pinealectomy - EX blinding - SCN suprachiasmatic nucleus  相似文献   

17.
Rats anticipate daily restricted meals with increased approaches to a feeder and an increase in core body temperature. Food anticipatory activity (FAA) is thought to be under the control of a feeding-entrained circadian oscillator. Although numerous forebrain lesions have failed to permanently abolish FAA, the hindbrain has not been investigated. The parabrachial nuclei (PBN) integrate information from visceral and gustatory afferents. This region is also innervated by neurons in the area postrema that have access to the peripheral circulation. Therefore, it is possible that this region plays a role in triggering FAA. In two experiments, a total of 19 rats were given ibotenic acid or electrolytic lesions targeted at the PBN. The PBN-lesioned animals showed a marked attenuation in anticipatory approaches to the food bin relative to sham-operated controls. Some animals did not anticipate the meal at all. In addition, the expected increase in core body temperature was severely attenuated in the PBN-lesioned animals compared with controls. The most likely interpretation of these data is that the PBN serve as a relay for information about the zeitgeber (food in the gut) or as a clock output pathway, but not as the site of the feeding-entrained circadian oscillator.  相似文献   

18.
19.
Summary Male Japanese quail,Coturnix coturnix japonica, displayed day-night rhythms in their body temperature, with significantly higher temperatures during the day than at night. There were individual variations in both the temperatures attained and amplitude of the day-night rhythm of body temperature in the group-housed birds. Accompanying these diurnal patterns in body temperature there were day-night rhythms in the effects of intraperitoneal administrations of the opiate agonist, morphine (1.0 and 10 mg·kg-1) and prototypic opiate antagonist, naloxone (10 mg·kg-1) on colonic body temperature. In the daytime, the body temperature response profiles of quail treated with morphine were dependent on the initial body temperature of the bird. In those birds with the lower daytime body temperatures, morphine caused an initial hyperthermic response that was followed by a hypothermia and then a weak hyperthermia; whereas, in birds with the higher initial body temperatures there was a pronounced hypothermia followed by a marked hyperthermia. At night, morphine induced a hyperthermic response in all quail that was followed by a hypothermia. These effects of morphine were blocked by naloxone, with naloxone by itself significantly decreasing the daytime temperature of those quail with the higher initial body temperature. Naloxone had no significant effects on the nighttime body temperatures of any of the quail. These results show that there are day-night rhythms and individual differences in opiate sensitivity and modulation of body temperature in male quail. These findings also suggest that endogenous opioid systems are involved in either the generation and/or expression of the day-night rhythm of body temperature in quail.Abbreviations LD light-dark - T L low initial body temperatures - T H high initial body temperatures  相似文献   

20.
Corticosterone is thought to be the main glucocorticoid secreted in response to stressful exercise, while melatonin buffers the adverse immunological effects of stress. The present work was aimed to evaluate whether swimming-exercise-induced stress leads to changes in the chronobiology parameters of the circadian rhythms of melatonin and corticosterone, and in the number and phagocytosis of peritoneal macrophages in 3-month-old male Wistar rats. The animals were subjected to a physical activity trial consisting of 2 h of free swimming. Radioimmunoassay was used to determine the plasma levels of melatonin and corticosterone. Phagocytosis was measured by the latex-bead phagocytosis index (PI), i.e., the number of latex beads ingested by 100 macrophages, the phagocytosis percentage (PP), i.e., the percentage of cells that had phagocytosed at least one latex bead, and the phagocytosis efficiency (PE), i.e., the ratio PI: PP which indicates how effectively the phagocytes ingested the particles. Stress significantly decreased the MESOR and amplitude of the melatonin rhythm, and significantly increased the MESOR of the corticosterone rhythm. The control animals' peritoneal macrophage number and PI showed a circadian rhythm with maxima at 02:00 and 03:00, respectively. The stressed group displayed higher values of PI than the controls at most hours of the night, but the number of cells in the peritoneal cavity was practically the same at all hours studied. These data confirm that melatonin and corticosterone act as modulators of the innate immune response, and that the circadian rhythm of the two hormones are altered in situations of stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号