首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate single-molecule electrophoretic translocation of A(50), C(50), A(25)C(50), and C(50)A(25) RNA molecules through the alpha-hemolysin transmembrane protein pore. We observe pronounced bilevel current blockages during translocation of A(25)C(50) and C(50)A(25) molecules. The two current levels observed during these bilevel blockages are very similar to the characteristic current levels observed during A(50) and C(50) translocation. From the temporal ordering of the two levels within the bilevel current blockages, we infer whether individual A(25)C(50) and C(50)A(25) molecules pass through the pore in a 3'-->5' or 5'-->3' orientation. Correlation between the level of current obstruction and the inferred A(25)C(50) or C(50)A(25) orientation indicates that 3'-->5' translocation of a poly C segment causes a significantly deeper current obstruction than 5'-->3' translocation. Our analysis also suggests that the 3' ends of C(50) and A(25)C(50) RNA molecules are more likely to initiate translocation than the 5' ends. Orientation dependent differences in a smaller current blockage that immediately precedes many translocation events suggest that this blockage also contains information about RNA orientation during translocation. These findings emphasize that the directionality of polynucleotide molecules is an important factor in translocation and demonstrate how structure within ionic current signals can give new insights into the translocation process.  相似文献   

2.
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.  相似文献   

3.
Song D  Shi B  Xue H  Li Y  Yu B  Xu Z  Liu F  Li J 《Current microbiology》2006,52(1):69-73
It has been reported that treatment with methotrexate (MTX) induces intestinal bacterial translocation; however, the definitive evidence of intestinal bacterial translocation induced by MTX has been lacking. The aim of this study was to confirm the intestinal bacterial translocation caused by MTX and to evaluate the preventive effect of granulocyte colony-stimulating factor (G-CSF) on intestinal bacterial translocation caused by MTX. Sprague-Dawley rats were treated with MTX (3.5 mg/kg) for 3 days to induce intestinal bacterial translocation; with gavaged Escherichia coli TG1 labeled with green fluorescent protein (GFP) for 2 days to track intestinal bacterial translocation; and with G-CSF (10 μg/kg) for 4 days to prevent intestinal bacterial translocation. Representative tissue specimens from the mesenteric lymph nodes, spleen, liver, and kidney were aseptically harvested for bacteria culture in ampicillin-supplemented medium. The bacteria labeled with GFP were detected in tissue specimens harvested from the rats treated with MTX but not detected in the rats that were not treated with MTX. G-CSF significantly ameliorated the situation of intestinal bacterial translocation.  相似文献   

4.
Palindromic AT-rich repeats (PATRRs) on chromosomes 11q23 and 22q11 at the constitutional t(11;22) breakpoint are predicted to induce genomic instability, which mediates the translocation. A PCR-based translocation-detection system for the t(11;22) has been developed with PCR primers flanking the PATRRs of both chromosomes, to examine the involvement of the PATRRs in the recurrent rearrangement. Forty unrelated carriers of the t(11;22) balanced translocation, plus two additional, independent cases with the supernumerary-der(22) syndrome, were analyzed to compare their translocation breakpoints. Similar translocation-specific junction fragments were obtained from both derivative chromosomes in all 40 carriers of the t(11;22) balanced translocation and from the der(22) in both of the offspring with unbalanced supernumerary-der(22) syndrome, suggesting that the breakpoints in all cases localize within these PATRRs and that the translocation is generated by a similar mechanism. This PCR strategy provides a convenient technique for rapid diagnosis of the translocation, indicating its utility for prenatal and preimplantation diagnosis in families including carriers of the balanced translocation.  相似文献   

5.
The paper summarizes studies of the molecular mechanism of the dynamic function of the ribosome, i. e. translocation, performed in the author's laboratory during the past decade. The hypothesis of the locking-unlocking of the ribosomal subparticles and the kinematical model of the working ribosome, the processes of spontaneous (factor-free) and factor-dependent translocation, the sequence of events in the factor-dependent translocation, the energetics of translocation and the contribution of the elongation factors with GTP are considered. The following conclusions are made: (1) the translocation mechanism is intrinsic to the structural organization of the ribosome itself but not introduced by the protein elongation factors; (2) the transpeptidation reaction is one of the sources of energy for the work of the translocation mechanism; (3) the protein elongation factors with GTP impart additional energy to the ribosome, including that for translocation, and thus ensure excess power which is realized, in particular, in the increase of the translocation rate and its resistance against inhibitors and hindrances; (4) the promoting role of the elongation factors with GTP does not proceed by a direct conjugation of GTP hydrolysis with translocation, but through the affinity of the elongation factors to the ribosome, with a subsequent compensation of the affinity at the expense of GTP cleavage.  相似文献   

6.
We examined the translocation of diacylglycerol kinase (DGK) alpha and gamma fused with green fluorescent protein in living Chinese hamster ovary K1 cells (CHO-K1) and investigated temporal and spatial correlations between DGK and protein kinase C (PKC) when both kinases are overexpressed. DGKalpha and gamma were present throughout the cytoplasm of CHO-K1 cells. Tetradecanoylphorbol 13-acetate (TPA) induced irreversible translocation of DGKgamma, but not DGKalpha, from the cytoplasm to the plasma membrane. The (TPA)-induced translocation of DGKgamma was inhibited by the mutation of C1A but not C1B domain of DGKgamma and was not inhibited by staurosporine. Arachidonic acid induced reversible translocation of DGKgamma from the cytoplasm to the plasma membrane, whereas DGKalpha showed irreversible translocation to the plasma membrane and the Golgi network. Purinergic stimulation induced reversible translocation of both DGKgamma and alpha to the plasma membrane. The timing of the ATP-induced translocation of DGKgamma roughly coincided with that of PKCgamma re-translocation from the membrane to the cytoplasm. Furthermore, re-translocation of PKCgamma was obviously hastened by co-expression with DGKgamma and was blocked by an inhibitor of DGK (R59022). These results indicate that DGK shows subtype-specific translocation depending on extracellular signals and suggest that PKC and DGK are orchestrated temporally and spatially in the signal transduction.  相似文献   

7.
C. van Heemert 《Chromosoma》1974,47(3):237-251
Translocation- and tertiary trisomies (for the X-chromosomes) were obtained after testcrossing translocation heterozygous females of an X-linked “simple” translocation stock. Meiotic disjunction as judged from segregations at M II (males) and in young eggs of testcrosses (males and females) in translocation trisomics was studied. No progeny of tertiary trisomic males and females was found, but male M II could be studied. Six different orientation types appeared in translocation trisomie (2n + 1) males and these were present in equal frequencies. No adjacent II configurations were found. The small X- and Y-chromosomes and the large translocated X-chromosome of the translocation complex disjoin at random (n and n + 1 gametes) in both translocation- and tertiary trisomic males. In translocation trisomic females four different orientation types appeared. From the high frequency of two of these (together, 94.5%) it is concluded that the two normal X-chromosomes show preferential pairing and disjunction, while the translocated X-chromosome moves to either one of the two poles at random. Primary trisomic (for the X-chromosome) males (XXY) and females (XXX) were obtained from testerossed translocation trisomics. Cytological analysis of adult male progeny of testerossed XXY males showed that no random orientation for the X-, X- and Y-chromosomes occurred because half of the sons was disomic (XY) and half of them trisomic (XXY). A possible mechanism is discussed. Analysis of young eggs of testerossed XXX females indicated a segregation of 2X∶1X=1∶1. The level of “semi”-sterility as scored from testcrosses of translocation trisomies appeared to be as in translocation heterozygotes. Here again a close relation exists between “semi”-sterility and deficiencies in eggs for a large chromosomal segment. The possible use of this translocation for genetic control of insect pests is discussed.  相似文献   

8.
9.
Activation of protein kinase C (PKC) involves its recruitment to the membrane, where it interacts with its activator(s). We expressed PKCalpha fused to green fluorescent protein and examined its real time translocation to the plasma membrane in living human corneal epithelial cells. Upon 10 min of stimulation with epidermal and hepatocyte growth factors (EGF and HGF), PKCalpha translocated to the plasma membrane. Keratinocyte growth factor did not stimulate PKCalpha translocation up to 1 h after stimulation. Pretreatment with the 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), followed by EGF or HGF, produced faster translocation of PKCalpha detectable at 2 min. However, the same concentration of 15(S)-HETE alone did not stimulate translocation. 15(S)-Hydroperoxyeicosatetraenoic acid and 5(S)-HETE did not affect growth factor-induced translocation of PKCalpha. PD153035, a specific inhibitor of tyrosine kinase activity of the EGF receptor, completely blocked PKCalpha translocation induced by EGF. PD98059, a specific MEK inhibitor, significantly inhibited EGF- and HGF-mediated PKCalpha translocation, which was reversed by addition of 15(S)-HETE. Phosphorylation of ERK1/2 by EGF was followed by phosphorylation of cytosolic phospholipase A(2) (cPLA(2)), and blocking ERK1/2 inhibited cPLA(2) activation. Immunofluorescence demonstrated translocation of p-cPLA(2) to plasma and nuclear membranes as early as 2 min. This may further increase arachidonic acid release from membrane phospholipid pools and increase the intracellular pool of HETEs. In fact, in cells prelabeled with [(3)H]arachidonic acid, EGF stimulated synthesis of 15(S)-HETE in the cytosolic fraction. 15(S)-HETE also reversed the effect of LOX inhibitor on EGF-mediated cell proliferation. Our results indicate that 15(S)-HETE is an intracellular second messenger that facilitates translocation of PKCalpha to the membrane and elucidate a mechanism that plays a regulatory role in cell proliferation crucial to corneal wound healing.  相似文献   

10.
In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.  相似文献   

11.
The rate of glucose phosphorylation in hepatocytes is determined by the subcellular location of glucokinase and by its association with its regulatory protein (GKRP) in the nucleus. Elevated glucose concentrations and precursors of fructose 1-phosphate (e.g., sorbitol) cause dissociation of glucokinase from GKRP and translocation to the cytoplasm. In this study, we investigated the counter-regulation of substrate-induced translocation by AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside), which is metabolized by hepatocytes to an AMP analog, and causes activation of AMP-activated protein kinase (AMPK) and depletion of ATP. During incubation of hepatocytes with 25 mM glucose, AICAR concentrations below 200 microM activated AMPK without depleting ATP and inhibited glucose phosphorylation and glucokinase translocation with half-maximal effect at 100-140 microM. Glucose phosphorylation and glucokinase translocation correlated inversely with AMPK activity. AICAR also counteracted translocation induced by a glucokinase activator and partially counteracted translocation by sorbitol. However, AICAR did not block the reversal of translocation (from cytoplasm to nucleus) after substrate withdrawal. Inhibition of glucose-induced translocation by AICAR was greater than inhibition by glucagon and was associated with phosphorylation of both GKRP and the cytoplasmic glucokinase binding protein, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2) on ser-32. Expression of a kinase-active PFK2 variant lacking ser-32 partially reversed the inhibition of translocation by AICAR. Phosphorylation of GKRP by AMPK partially counteracted its inhibitory effect on glucokinase activity, suggesting altered interaction of glucokinase and GKRP. In summary, mechanisms downstream of AMPK activation, involving phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and GKRP are involved in the ATP-independent inhibition of glucose-induced glucokinase translocation by AICAR in hepatocytes.  相似文献   

12.
Al-Khalili L  Yu M  Chibalin AV 《FEBS letters》2003,536(1-3):198-202
We determined insulin-stimulated Na(+),K(+)-ATPase isoform-specific translocation to the skeletal muscle plasma membrane. When rat muscle plasma membrane fractions were isolated by discontinuous sucrose gradients, insulin-stimulated translocation of alpha(2)- but not alpha(1)-subunits was detected. However, using cell surface biotinylation techniques, an insulin-induced membrane translocation of both alpha(1) and alpha(2)-subunits in rat epitrochlearis muscle and cultured human skeletal muscle cells was noted. Na(+),K(+)-ATPase alpha-subunit translocation was abolished by the phosphatidylinositol (PI) 3-kinase inhibitor wortmannin, as well as by the protein kinase C inhibitor GF109203X. Thus, insulin mediates Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunit translocation to the skeletal muscle plasma membrane via a PI 3-kinase-dependent mechanism.  相似文献   

13.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

14.
Kida Y  Mihara K  Sakaguchi M 《The EMBO journal》2005,24(18):3202-3213
Type I signal-anchor sequences mediate translocation of the N-terminal domain (N-domain) across the endoplasmic reticulum (ER) membrane. To examine the translocation in detail, dihydrofolate reductase (DHFR) was fused to the N-terminus of synaptotagmin II as a long N-domain. Translocation was arrested by the DHFR ligand methotrexate, which stabilizes the folding of the DHFR domain, and resumed after depletion of methotrexate. The targeting of the ribosome-nascent chain complex to the ER requires GTP, whereas N-domain translocation does not require any nucleotide triphosphates. Significant translocation was observed even in the absence of a lumenal hsp70 (BiP). When the nascent polypeptide was released from the ribosomes after the membrane targeting, the N-domain translocation was suppressed and the nascent chain was released from the translocon. Ribosomes have a crucial role in maintaining the translocation-intermediate state. The translocation of the DHFR domain was greatly impaired when it was separated from the signal-anchor sequence. Unfolding and translocation of the DHFR domain must be driven by the stroke of the signal-anchor sequence into translocon.  相似文献   

15.
The system of translation of cellulose-bound poly(uridylic acid) by Escherichia coli ribosomes has been used for preparation of pre-translocation state ribosomes in columns. Translocation has been induced by passing the elongation factor G (EF-G) with GTP or its non-cleavable analog (guanosine 5'-[beta, gamma-methylene]triphosphate) through the column. A method for quantitative comparison of translocation rates, and thus of effectiveness of translocation-inducing factors, has been proposed. The method is based on an analysis of the profile of deacylated tRNA elution resulting from translocation in the column. The determination of the rate and amount of translocation has been done under different ionic conditions. It has been found that the Mg2+ concentration is a decisive factor of translocation in vitro: at high Mg2+ (30 mM) EF-G cannot induce translocation, and lowering the Mg2+ concentration (to 10 mM) is required for EF-G to become effective. Sufficiently low Mg2+ (3 mM) itself has proved to induce fast and complete translocation, without EF-G.  相似文献   

16.
In vitro translocation of periplasmic and outer membrane proteins into inverted plasma membrane vesicles from Escherichia coli was completely prevented by the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). DCCD was inhibitory to both co- and post-translational translocations, suggesting an involvement of the H+-translocating F1F0-ATPase in either mode of transport. This was verified by (i) the dependence of efficient co-translational translocation upon a low salt, i.e. F1-containing extract from membrane vesicles; (ii) the co-purification of the translocation activity present in this extract and F1-ATPase; (iii) the inability of either vesicles or their low-salt extract, derived from F1F0-ATPase-lacking mutant strains, to support translocation; and (iv) the greatly diminished extent of ATP-dependent, post-translational translocation into F1-deprived vesicles. Membranes devoid of F1 did show, however, residual translocation activity that was also found to be inhibitable by DCCD. These results suggest a dual target for DCCD in bacterial protein export, one being the H+-ATPase and the other an as yet unidentified translocation factor.  相似文献   

17.
Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA(63))(7), formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell's endosomal membrane, disrupting cellular homeostasis. (PA(63))(7) incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel can be driven by voltage on a timescale of seconds. A characteristic of the translocation of LF(N), the N-terminal 263 residues of LF, is its S-shaped kinetics. Because all of the translocation experiments reported in the literature have been performed with more than one LF(N) molecule bound to most of the channels, it is not clear whether the S-shaped kinetics are an intrinsic characteristic of translocation kinetics or are merely a consequence of the translocation in tandem of two or three LF(N)s. In this paper, we show both in macroscopic and single-channel experiments that even with only one LF(N) bound to the channel, the translocation kinetics are S shaped. As expected, the translocation rate is slower with more than one LF(N) bound. We also present a simple electrodiffusion model of translocation in which LF(N) is represented as a charged rod that moves subject to both Brownian motion and an applied electric field. The cumulative distribution of first-passage times of the rod past the end of the channel displays S-shaped kinetics with a voltage dependence in agreement with experimental data.  相似文献   

18.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

19.
Brand A  Yavin E 《Neurochemical research》2005,30(10):1257-1267
The possible interplay between extracellular signal-regulated protein kinase (ERK) activation and ethanolamine phosphoglycerides (PG) membrane bilayer translocation following oxidative stress (OS) (0.5 mM H2O2/0.05 mM Fe2+), was examined in oligodendroglia, OLN93, cells with altered plasma membrane PG composition. Cells supplemented with 50 μM docosahexaenoic acid (DHA, 22:6n3) to increase the number of potential double bond targets for OS in ethanolamine-PG (EPG) were compared to cells with diminished content of EPG, attained by the addition of 0.5 mM N,N-dimethylethanolamine (dEa). After 30 min OS, EPG translocation accompanied by sustained ERK activation and nuclear translocation culminating in apoptosis was found in DHA-supplemented cells in contrast to no EPG translocation, a brief ERK activation, but no nuclear translocation, and no cell death in DHA/dEa-supplemented cells. DHA/dEa-supplemented cells pretreated with the protein-tyrosine phosphatases inhibitor Na3VO4 followed by OS, although expressing a sustained ERK activation and nuclear translocation, failed to show apoptosis and lacked EPG translocation. In DHA-supplemented cells U0126, a MEK inhibitor, prevented ERK activation and EPG translocation and protected from cell death. These findings most likely indicate that ERK activation is an indispensable component for the signaling cascades leading to EPG translocation but only activation of the latter is leading to OS-induced apoptotic cell death.  相似文献   

20.
Parathyroid hormone (PTH) stimulates both bone formation and resorption by activating diverse osteoblast signalling pathways. Upstream signalling for PTH stimulation of protein kinase C-alpha (PKCalpha) membrane translocation and subsequent expression of the pro-resorptive cytokine interleukin-6 (IL-6) was investigated in UMR-106 osteoblastic cells. PTH 1-34, PTH 3-34, PTHrP and PTH 1-31 stimulated PKCalpha translocation and IL-6 promoter activity. Pharmacologic intervention at the adenylyl cyclase (AC) pathway (forskolin, IBMX, PKI) failed to alter PTH 1-34- or PTH 3-34-stimulated PKCalpha translocation. The phosphoinositol-phospholipase C (PI-PLC) antagonist U73122 slightly decreased PTH 1-34-stimulated PKCalpha translocation; however, the control analogue U73343 acted similarly. Propranolol, an inhibitor of phosphatidic acid (PA) phosphohydrolase, decreased diacylglycerol (DAG) formation and attenuated PTH 1-34- and PTH 3-34-stimulated PKCalpha translocation and IL-6 promoter activity, suggesting a phospholipase D (PLD)-dependent mechanism. This is the first demonstration that PLD-mediated signalling leads to both PKC-alpha translocation and IL-6 promoter activation in osteoblastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号