共查询到9条相似文献,搜索用时 0 毫秒
1.
Dissolution of bagasse with 1-butyl-3-methylimidazolium chloride at high temperatures (110-160 °C) is investigated as a pretreatment process for saccharification and fermentation based biofuel production. Material balances are reported and used along with enzymatic saccharification data to identify optimum pretreatment conditions (150 °C for 90 min). At all pretreatment temperatures, dissolved and reprecipitated material is enriched in cellulose, has a low crystallinity and the cellulose component is easily and quantitatively hydrolysed (100%, 3h, 15 FPU). At pretreatment temperatures ≤ 150 °C, the undissolved material has only slightly lower crystallinity than the starting. At pretreatment temperatures ≥ 150 °C, the undissolved material has low crystallinity and when combined with the dissolved material has a saccharification rate and extent similar to completely dissolved material. Complete dissolution is not necessary to maximise saccharification efficiency at temperatures ≥ 150 °C. 相似文献
2.
Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment 总被引:1,自引:0,他引:1
Qiang Li Yu-Cai HeMo Xian Gao JunXin Xu Jian-Ming YangLiang-Zhi Li 《Bioresource technology》2009,100(14):3570-3575
This study aims to establish a cellulose pretreatment process using ionic liquids (ILs) for efficient enzymatic hydrolysis. The IL 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM]DEP) was selected in view of its low viscous and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from wheat straw pretreated with this IL at 130 °C for 30 min reached 54.8% after being enzymatically hydrolyzed for 12 h. Wheat straw regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated wheat straw, was evaluated using Saccharomyces cerevisiae. This microbe could ferment glucose efficiently, and the ethanol production was 0.43 g/g glucose within 26 h. In conclusion, the IL [EMIM]DEP shows promise as pretreatment solvent for wheat straw, although its cost should be reduced and in-depth exploration of this subject is needed. 相似文献
3.
Li-Qun Jiang Zhen Fang Xing-Kang Li Jia Luo Suet-Pin Fan 《Process Biochemistry》2013,48(12):1942-1946
Loss of hemicellulose and inability to effectively decrystallize cellulose, result in low yield and high cost of sugars derived from biomass. In this work, dilute sulfuric acid pretreatment could easily remove most of hemicellulose as sugars. The sugars were successfully used for 2,3-butanediol production with relative high yield (36.1%). Then, the remained solid residue after acid-pretreatment was further pretreated by ionic liquid (IL) to decrease its crystallinity for subsequent enzymatic saccharification. The combination of dilute acid- and IL-pretreatments resulted in significant higher glucose yield (95.5%) in enzymatic saccharification, which was more effective than using dilute acid- or IL-pretreatment alone. This strategy seems a promising route to achieve high yield of sugars from both hemicellulose and cellulose for biorefinery. 相似文献
4.
Kim JY Shin EJ Eom IY Won K Kim YH Choi D Choi IG Choi JW 《Bioresource technology》2011,102(19):9020-9025
1-Ethyl-3-methylimidazolium acetate ([Emim][CH?COO]) was used for the extraction of lignin from poplar wood (Populus albaglandulosa), which was called to ionic liquid lignin (ILL) and structural features of ILL were compared with the corresponding milled wood lignin (MWL). Yields of ILL and MWL were 5.8±0.3% and 4.4±0.4%, respectively. The maximum decomposition rate (V(M)) and temperature (T(M)) corresponding to V(M) were 0.25%/ °C and 308.2 °C for ILL and 0.30%/ °C and 381.3 °C for MWL. The amounts of functional groups (OMe and phenolic OH) appeared to be similar for both lignins; approximately 15.5% and 6.7% for ILL and 14.4% and 6.3% for MWL. However, the weight average molecular weight (M(w)) of ILL (6347 Da) was determined to be 2/3-fold of that of MWL (10,002 Da) and polydispersity index (PDI: M(w)/M(n)) suggested that the lignin fragments were more uniform in the ILL (PDI 1.62) than in the MWL (PDI 2.64). 相似文献
5.
Diedericks D van Rensburg E García-Aparicio Mdel P Görgens JF 《Biotechnology progress》2012,28(1):76-84
Various ionic liquids have been identified as effective pretreatment solvents that can enhance the cellulose digestibility of lignocellulose by removing lignin, one of the main factors contributing to the recalcitrant nature of lignocellulose. 1-Butyl-3-methylimidazolium methylsulfate ([BMiM]MeSO(4)) is a potential delignification reagent, hence its application as a pretreatment solvent for sugarcane bagasse (SB) was investigated. The study also evaluated the benefit of an acid catalyst (i.e., H(2) SO(4)) and the effect of pretreatment conditions, which varied within a time and temperature range of 0-240 min and 50-150°C, respectively. The use of an acid catalyst contributed to a more digestible solid and a higher degree of delignification. However, the [BMiM]MeSO(4)-H(2) SO(4) combination failed to produce a fully digestible solid, as a maximum cellulose digestibility of 77% (w/w) was obtained at the optimum pretreatment condition of 125°C for 120 min. Furthermore, up to half of the lignin content could be extracted during pretreatment, while simultaneously extensive, sometimes complete, removal of xylan, the presence of which, also hampers cellulose digestibility. Hence, [BMiM]MeSO(4) has been identified an effective pretreatment solvent for SB as the application thereof both significantly improved digestibility, and simultaneously removed two of the main factors contributing to the recalcitrant nature of lignocellulose. As xylan and lignin have potential value as precursor chemicals, the existing process may in future be extended toward substrate fractionation, a biorefinery concept where value is added to all feedstock constituents. 相似文献
6.
7.
The solution of [RhCl(PPh3)3] in acidic 1-ethyl-3-methylimidazolium chloroaluminate(III) ionic liquid (AlCl3 molar fraction, xAlCl3=0.67) was investigated by 1H and 31P{1H} NMR. One triphenyl phosphine is lost from the complex and is protonated in the acidic media, and cis-[Rh(PPh3)2ClX], (2), where X is probably [AlCl4]−, is formed. On, standing, 2 is converted to trans-[Rh(H)(PPh3)2X], (3). The reaction of 2 and H2 also produces trans-[Rh(H)(PPh3)2X], (3). 1H and 31P{1H} NMR support the suggestion that a weak ligand such as [AlCl4]−, present in solution may interact with the metal centre. When [RhCl(PPh3)3] is dissolved in CH2Cl2/AlCl3/HCl for comparison, two exchanging isomers of what is probably [RhH{(μ-Cl)2AlCl2}{(μ-Cl)AlCl3}(PPh3)2], (6) and (7), are formed. 相似文献
8.
De Diego T Lozano P Gmouh S Vaultier M Iborra JL 《Biotechnology and bioengineering》2004,88(7):916-924
The stability of alpha-chymotrypsin in the ionic liquid, 1-ethyl-3-methyl-imidizolium bis[(trifluoromethyl)sulfonyl]amide ([emim][NTf2]), was studied at 30 and 50 degrees C and compared with the stability in other liquid media, such as water, 3 M sorbitol, and 1-propanol. The kinetic analysis of the enzyme stability pointed to the clear denaturative effect of 1-propanol, while both 3M sorbitol and [emim][NTf2] displayed a strong stabilizing power. For the first time, it is shown that enzyme stabilization by ionic liquids seems to be related to the associated structural changes of the protein that can be observed by differential scanning calorimetry (DSC) and fluorescence and circular dichroism (CD). The [emim][NTf2] enhanced both the melting temperature and heat capacity of the enzyme compared to the other media assayed. The fluorescence spectra clearly showed the ability of [emim][NTf2] to compact the native structural conformation of alpha-chymotrypsin, preventing the usual thermal unfolding which occurs in other media. Changes in the secondary structure of this beta/beta protein, as quantified by the CD spectra, pointed to the great enhancement (up 40% with respect to that in water) of beta-strands in the presence of the ionic liquid, which reflects its stabilization power. 相似文献
9.
A.P. Reddy C.W. Simmons J. Claypool L. Jabusch H. Burd M.Z. Hadi B.A. Simmons S.W. Singer J.S. VanderGheynst 《Journal of applied microbiology》2012,113(6):1362-1370