首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Filarial nematodes, parasites of vertebrates, including humans, secrete immunomodulatory molecules into the host environment. We have previously demonstrated that one such molecule, the phosphorylcholine-containing glycoprotein ES-62, acts to bias the immune response toward an anti-inflammatory/Th2 phenotype that is conducive to both worm survival and host health. For example, although ES-62 initially induces macrophages to produce low levels of IL-12 and TNF-alpha, exposure to the parasite product ultimately renders the cells unable to produce these cytokines in response to classic stimulators such as LPS/IFN-gamma. We have investigated the possibility that a TLR is involved in the recognition of ES-62 by target cells, because phosphorylcholine, a common pathogen-associated molecular pattern, appears to be responsible for many of the immunomodulatory properties of ES-62. We now demonstrate that ES-62-mediated, low level IL-12 and TNF-alpha production by macrophages and dendritic cells is abrogated in MyD88 and TLR4, but not TLR2, knockout, mice implicating TLR4 in the recognition of ES-62 by these cells and MyD88 in the transduction of the resulting intracellular signals. We also show that ES-62 inhibits IL-12 induction by TLR ligands other than LPS, bacterial lipopeptide (TLR2) and CpG (TLR9), via this TLR4-dependent pathway. Surprisingly, macrophages and dendritic cells from LPS-unresponsive, TLR4-mutant C3H/HeJ mice respond normally to ES-62. This is the first report to demonstrate that modulation of cytokine responses by a pathogen product can be abrogated in cells derived from TLR4 knockout, but not C3H/HeJ mice, suggesting the existence of a novel mechanism of TLR4-mediated immunomodulation.  相似文献   

2.
3.
Phosphorylcholine (PC) is increasingly becoming recognised as a carbohydrate-associated component of a wide variety of procaryotic and eucaryotic pathogens. Studies employing nematode PC-containing molecules indicate that it possesses a plethora of immunomodulatory activities. ES-62 is a PC-containing glycoprotein, which is secreted by the rodent filarial nematode Acanthocheilonema viteae and which provides a model system for the dissection of the mechanisms of immune evasion induced by related PC-containing glycoproteins expressed by human filarial nematodes. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitised humans, ES-62 is able to inhibit antigen receptor-stimulated proliferation of B and T lymphocytes in vitro and in vivo. The active component of ES-62 appears to be PC, as PC conjugated to albumin or even PC alone broadly mimic the results obtained with ES-62. PC-induced impaired lymphocyte responsiveness appears to reflect uncoupling of the antigen receptors from key intracellular proliferative signalling events such as the phosphoinositide 3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways. Although PC-ES-62 can desensitise B and T cells, not all cells are affected, and in fact it is still possible to generate an antibody response to the molecule. Dissection of this response indicates that it is of the TH-2 type. This appears to reflect the ability of ES-62 to direct the polarity of the T cell response by suppressing the production of proinflammatory cytokines, inducing the induction of anti-inflammatory cytokines and by driving the maturation of dendritic cells that direct TH-2 T cell responses.  相似文献   

4.
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO’s in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.  相似文献   

5.
Unraveling the molecular mechanisms by which filarial nematodes, major human pathogens in the tropics, evade the host immune system remains an elusive goal. We have previously shown that excretory-secretory product-62 (ES-62), a homologue of phosphorylcholine-containing molecules that are secreted by human parasites and which is active in rodent models of filarial infection, is able to polyclonally activate certain protein tyrosine kinase and mitogen-activating protein kinase signal transduction elements in B lymphocytes. Such activation mediates desensitization of subsequent B cell Ag receptor (BCR) ligation-induced activation of extracellular signal-regulated kinase-mitogen-activated protein (ErkMAP) kinase and ultimately B cell proliferation. We now show that the desensitization is due to ES-62 targeting two major regulatory sites of B cell activation. Firstly, pre-exposure to ES-62 primes subsequent BCR-mediated recruitment of SHP-1 tyrosine phosphatase to abolish recruitment of the RasErkMAP kinase cascade via the Igalphabeta-ShcGrb2Sos adaptor complex interactions. Secondly, any ongoing ErkMAP kinase signaling in ES-62-primed B cells is terminated by the MAP kinase phosphatase, Pac-1 that is activated consequently to challenge via the BCR.  相似文献   

6.
We demonstrate that indolactam V, a non-phorbol protein kinase C activator, promotes U937 cell attachment to fibronectin, type IV collagen and laminin. In the absence of indolactam V, 2-4% of U937 cells attach to all test substrates, however, in the presence of 100 nM indolactam V, 25, 16 and 11% of U937 cells attach to fibronectin, type IV collagen and laminin, respectively. When added concomitantly, 90 microM H-7, a protein kinase C inhibitor, reduces indolactam V-induced U937 cell adhesion to fibronectin by 91%. Monoclonal antibodies directed against both the beta1 and alpha 5 integrin subunits inhibit indolactam V-induced U937 cell adhesion to fibronectin by 62 and 52%, respectively. Indolactam V also promotes homotypic aggregation in U937 cells, which is blocked with either anti-ICAM or anti-LFA-1 antibodies. In addition, indolactam V promotes U937 cell secretion of a 92 kDa gelatinase as demonstrated by zymography. In the presence of low levels of morphine (10 nM-1.0 microM), the U937 cell attachment to matrix proteins was not significantly affected. However, in the presence of 10 microM morphine, the indolactam V treated cells exhibit a 71-74% reduction in cell adhesion to the matrix proteins. Further, 10 microM morphine also blocks indolactam V-induced homotypic aggregation and gelatinase secretion. The inhibitory effect of morphine on cell-matrix adhesion and gelatinase secretion was not inhibited by the opiate receptor antagonist naloxone (1 microM). While 10 microM naloxone did partially counteract the effect of 10 microM morphine on U937 cell attachment, this effect was likely non-specific since 10 microM naloxone alone increased cell adhesion. Supporting this conclusion, PCR analysis revealed that U937 cells do not express the mu high affinity morphine receptor. Also, indolactam V did not induce mu receptor expression, suggesting that morphine acts on U937 cells in a non-specific fashion.  相似文献   

7.
Zuo D  Yu X  Guo C  Yi H  Chen X  Conrad DH  Guo TL  Chen Z  Fisher PB  Subjeck JR  Wang XY 《FASEB journal》2012,26(4):1493-1505
Recognition of pathogen-associated molecular patterns by innate immune receptors is essential for host defense responses. Although extracellular stress proteins are considered as indicators of the stressful conditions (e.g., infection or cell injury), the exact roles of these molecules in the extracellular milieu remain less defined. We found that glucose-regulated protein 170 (Grp170), the largest stress protein and molecular chaperone, is highly efficient in binding CpG oligodeoxynucleotides (CpG-ODN), the microbial DNA mimetic sensed by toll-like receptor 9 (TLR9). Extracellular Grp170 markedly potentiates the endocytosis and internalization of CpG-ODN by mouse bone marrow-derived macrophages and directly interacts with endosomal TLR9 on cell entry. These molecular collaborations result in the synergistic activation of the MyD88-dependent signaling and enhanced production of proinflammatory cytokines and nitric oxide in mouse primary macrophages as well as human THP-1 monocyte-derived macrophages, suggesting that Grp170 released from injured cells facilitates the sensing of pathogen-associated "danger" signals by intracellular receptors. This CpG-ODN chaperone complex-promoted innate immunity confers increased resistance in mice to infection of Listeria monocytogenes compared with CpG-ODN treatment alone. Our studies reveal a previously unrecognized attribute of Grp170 as a superior DNA-binding chaperone capable of amplifying TLR9 activation on pathogen recognition, which provides a conceptual advance in understanding the dynamics of ancient chaperoning functions inside and outside the cell.  相似文献   

8.
It has been well established that inflammation plays a critical role in cancer. Chronic inflammation promotes tumorgenesis and metastasis, which suggests that anti-inflammation drugs could act as a tumor suppressor. It is known that the peroxisome proliferator-activated receptor γ (PPARγ) has been implicated in anti-inflammatory responses; however, the anti-tumor effects of PPARγ have not been intensively investigated. In this study, we examined the effects of PPARγ in cancer. We show that the activation of PPARγ by its agonist rosiglitazone (RGZ) reduces cell proliferation rate in inflammatory and tumor-derived U937 cells. Treatment of RGZ suppresses the expression Toll-like receptor 4 (TLR4) and decreases the production of TNF-α in LPS treated U937 cells. This suggests that NF-κB signaling may be involved in anti-tumor effect of RGZ. Our results demonstrate a role of PPARγ in regulation of NF-κB signaling by modulating TLR4 expression and TNF-α production.  相似文献   

9.
蛋白激酶C抑制剂对U937细胞清道夫受体功能的影响   总被引:8,自引:0,他引:8  
为了解细胞内蛋白质磷酸化水平对清道夫受体功能的影响,用蛋白激酶C抑掉剂形孢菌素(staurosporine,STA)处理人U937细胞,分别测定对照组和处理组细胞对碘标记的氧化低密度脂蛋白(^125I)ox-LDL的降解,结合,细胞表面受体复合物的内移以及细胞内脂质蓄积的程度,并利用放射自显影方法观察药物对细胞表面受体表达的影响,结果发现STA可以促进细胞结合(^125I)ox-LDL增加细胞表面  相似文献   

10.
We previously showed that viable Mycobacterium tuberculosis (Mtb) bacilli contain distinct ligands that activate cells via the mammalian Toll-like receptor (TLR) proteins TLR2 and TLR4. We now demonstrate that expression of a dominant negative TLR2 or TLR4 proteins in RAW 264.7 macrophages partially blocked Mtb-induced NF-kappa B activation. Coexpression of both dominant negative proteins blocked virtually all Mtb-induced NF-kappa B activation. The role of the TLR4 coreceptor MD-2 was also examined. Unlike LPS, Mtb-induced macrophage activation was not augmented by overexpression of ectopic MD-2. Moreover, cells expressing an LPS-unresponsive MD-2 mutant responded normally to Mtb. We also observed that the lipid A-like antagonist E5531 specifically inhibited TLR4-dependent Mtb-induced cellular responses. E5531 could substantially block LPS- and Mtb-induced TNF-alpha production in both RAW 264.7 cells and primary human alveolar macrophages (AM phi). E5531 inhibited Mtb-induced AM phi apoptosis in vitro, an effect that was a consequence of the inhibition of TNF-alpha production by E5531. In contrast, E5531 did not inhibit Mtb-induced NO production in RAW 264.7 cells and AM phi. Mtb-stimulated peritoneal macrophages from TLR2- and TLR4-deficient animals produced similar amounts of NO compared with control animals, demonstrating that these TLR proteins are not required for Mtb-induced NO production. Lastly, we demonstrated that a dominant negative MyD88 mutant could block Mtb-induced activation of the TNF-alpha promoter, but not the inducible NO synthase promoter, in murine macrophages. Together, these data suggest that Mtb-induced TNF-alpha production is largely dependent on TLR signaling. In contrast, Mtb-induced NO production may be either TLR independent or mediated by TLR proteins in a MyD88-independent manner.  相似文献   

11.
The rates of internalization and uncoating of 32P-labelled human immunodeficiency virus (HIV) in the human T lymphoid cell line CEM are consonant with a receptor-mediated endocytosis mechanism of entry. This interpretation was affirmed by electron microscopic observation of virions within endosomes. Virus binding and infectivity were inhibited to the same extent by pretreatment with OKT4A antibody, therefore, the CD4 receptor-dependent pathway of internalization appears to be the infectious route of entry. The pattern of internalization by the human monoblastoid cell line U937 proved to be more complex, involving rapid and efficient CD4-independent internalization. Electron microscopy revealed the presence of large intracellular vesicles, each containing several virions. Antibody against the CD4 receptor for virus efficiently blocked infection, but did not reduce significantly HIV binding or internalization in the U937 cell line. Consequently, U937 cells have a CD4-independent pathway of virus internalization that does not coincide with the route of entry for infectious HIV.  相似文献   

12.
13.
For several years it is known that beta-adrenergic receptor agonists have anti-inflammatory effects. However, little is known about the role of beta-adrenergic receptors on macrophages in the modulation of cytokine production by beta-agonists during inflammation. In this study, the presence of beta-receptors on PMA-differentiated U937 human macrophages, and the participation of these receptors in the modulation of LPS-mediated cytokine production by beta-agonists was investigated. Total beta-receptor expression on undifferentiated (monocyte) and PMA-differentiated U937 cells was established using receptor binding studies on membrane fractions with a radio ligand. The expression of beta-receptors proved to be significantly lower on monocytes than on macrophages, additionally a predominant expression of beta 2-receptors was found. Production of the cytokines TNF-alpha, IL-6, and IL-10 by LPS-stimulated differentiated U937 cells was measured in time. Peak concentrations for TNF-alpha, IL-6 and IL-10 occurred at 3, 12 and 9 hrs, respectively. When differentiated U937 cells were incubated with both LPS and the beta-agonist clenbuterol the production of TNF-alpha and IL-6 was significantly reduced. However the production of IL-10 was increased. To study the mechanism of modulation of cytokine production in more detail, U937 macrophages were incubated with LPS/clenbuterol in combination with selective beta 1- and beta 2-antagonists. These results indicated that the beta 2- and not the beta 1-receptor is involved in the anti-inflammatory activity of clenbuterol.  相似文献   

14.
The elicitation of large amount inflammatory cytokine in serum has been developed as the cause of the plasma leakage in dengue fever (DF)/dengue haemorrhagic fever (DHF) infection. Virus recognition in innate immunity is the key. The Toll-like receptors (TLRs) play an important role in pathogen recognition towards cytokine induction among several viruses; however, the role of TLRs on innate immune recognition against DENV remains unclear. This study aims at the interaction between dengue virus (DENV) and human TLRs at the incipient stage of infection in vitro . Our experiment reveals that stably expression of TLR3, 7, 8 on HEK293 enables IL-8 secretion after DENV recognition. By the model of human monocytic cells U937, we demonstrated the trigger of IL-8 after viral recognition of human monocytic cell is primary through TLR3 following endosomal acidification. Silencing of TLR3 in U937 cells significantly blocks the DENV-induced IL-8 production. Besides, the interaction is further corroborated by colocalization of TLR3 and DENV RNA upon DENV internalization. Furthermore, in this study we found the expression of TLR3 can mediate strong IFN-α/β release and inhibit DENV viral replication significantly, thus limit the cytopathic effect.  相似文献   

15.
ES-62, a protein secreted by filarial nematodes, parasites of vertebrates including humans, has an unusual posttranslational covalent addition of phosphorylcholine to an N-type glycan. Studies on ES-62 from the rodent parasite Acanthocheilonema viteae ascribe it a dominant role in ensuring parasite survival by modulating the host immune system. Understanding this immunomodulation at the molecular level awaits full elucidation but distinct components of ES-62 may participate: the protein contributes aminopeptidase-like activity whereas the phosphorylcholine is thought to act as a signal transducer. We have used biophysical and bioinformatics-based structure prediction methods to define a low-resolution model of ES-62. Sedimentation equilibrium showed that ES-62 is a tightly bound tetramer. The sedimentation coefficient is consistent with this oligomer and the overall molecular shape revealed by small angle x-ray scattering. A 19 A model for ES-62 was restored from the small-angle x-ray scattering data using the program DAMMIN which uses simulated annealing to find a configuration of densely packed scattering elements consistent with the experimental scattering curve. Analysis of the primary sequence with the position-specific iterated basic local alignment search tool, PSI-BLAST, identified six closely homologous proteins, five of which are peptidases, consistent with observed aminopeptidase activity in ES-62. Differences between the secondary structure content of ES-62 predicted using the consensus output from the secondary structure prediction server JPRED and measured using circular dichroism are discussed in relation to multimeric glycosylated proteins. This study represents the first attempt to understand the multifunctional properties of this important parasite-derived molecule by studying its structure.  相似文献   

16.
The factors that contribute to the exceptionally high incidence of Mycobacterium tuberculosis (MTb) disease in HIV(+) persons are poorly understood. Macrophage apoptosis represents a critical innate host cell response to control MTb infection and limit disease. In the current study, virulent live or irradiated MTb (iMTbRv) induced apoptosis of differentiated human U937 macrophages in vitro, in part dependent on TNF-alpha. In contrast, apoptosis of differentiated HIV(+) human U1 macrophages (HIV(+) U937 subclone) was markedly reduced in response to iMTbRv and associated with significantly reduced TNF-alpha release, whereas apoptosis and TNF-alpha release were intact to TLR-independent stimuli. Furthermore, reduced macrophage apoptosis and TNF-alpha release were independent of MTb phagocytosis. Whereas surface expression of macrophage TLR2 and TLR4 was preserved, IL-1 receptor associated kinase-1 phosphorylation and NF-kappaB nuclear translocation were reduced in HIV(+) U1 macrophages in response to iMTbRv. These findings were confirmed using clinically relevant human alveolar macrophages (AM) from healthy persons and asymptomatic HIV(+) persons at clinical risk for MTb infection. Furthermore, in vitro HIV infection of AM from healthy persons reduced both TNF-alpha release and AM apoptosis in response to iMTbRv. These data identify an intrinsic specific defect in a critical macrophage cellular response to MTb that may contribute to disease pathogenesis in HIV(+) persons.  相似文献   

17.
Phosphorylcholine (PC) is found attached to N-type glycans of proteins secreted by filarial nematodes, where it appears to act as an immunomodulator. Based on information on the structure and biosynthesis of the PC-glycan of a major secreted protein, ES-62, strategies were designed with potential for preparing PC-free material to better understand the importance of PC in filarial nematode immunomodulation. The strategies involve either enzymatic removal of PC or inhibition of its attachment during ES-62 synthesis. No method tested was found to be 100% effective although approximately 70% removal was obtained by culturing worms in Et18OCH3. Reasons for failure to obtain complete absence of PC moieties are discussed in relation to the structure and synthesis of PC-glycans and in addition PC-glycan biosynthesis is briefly commented on as a target for chemotherapy.  相似文献   

18.
Aleutian mink disease parvovirus (ADV) mRNAs are found in macrophages in lymph nodes and peritoneal exudate cells from ADV-infected mink. Therefore, we developed an in vitro infection system for ADV by using primary cultures of mink macrophages or macrophage cell lines. In peritoneal macrophage cultures from adult mink, virulent ADV-Utah I strain showed nuclear expression of viral antigens with fluorescein isothiocyanate-labeled ADV-infected mink serum, but delineation of specific viral proteins could not be confirmed by immunoblot analysis. Amplification of ADV DNA and production of replicative-form DNA were observed in mink macrophages by Southern blot analysis; however, virus could not be serially propagated. The human macrophage cell line U937 exhibited clear nuclear expression of viral antigens after infection with ADV-Utah I but not with tissue culture-adapted ADV-G. In U937 cells, ADV-Utah I produced mRNA, replicative-form DNA, virion DNA, and structural and nonstructural proteins; however, virus could not be serially passaged nor could [3H]thymidine-labeled virions be observed by density gradient analysis. These findings indicated that ADV-Utah I infection in U937 cells was not fully permissive and that there is another restricted step between gene amplification and/or viral protein expression and production of infectious virions. Treatment with the macrophage activator phorbol 12-myristate 13-acetate after adsorption of virus reduced the frequency of ADV-positive U937 cells but clearly increased that of human macrophage line THP-1 cells. These results suggested that ADV replication may depend on conditions influenced by the differentiation state of macrophages. U937 cells may be useful as an in vitro model system for the analysis of the immune disorder caused by ADV infection of macrophages.  相似文献   

19.
20.
Several malignancies over-express the epidermal growth factor receptor, ligation of which results in cellular differentiation and multiplication. Mononuclear phagocytes secrete this cytokine and its receptor has been detected on microglial cells. This communication describes the expression (and its regulation) of epidermal growth factor receptor (EGFR) on U937 cells. We have shown that a few are EGFR-positive, with expression being up regulated by interleukin 6 (IL-6). Also, when cultured in the presence of serum with the monoclonal anti-EGFR, ICR62, U937s showed a reduced growth rate. By contrast, ICR9 caused a significant increase in cellular proliferation. Both antibodies induced cycle arrest in late G(1)/S phase. When the cells were cultured in the absence of serum, low antibody concentration (10 microg/ml) showed an early inhibitory effect on cell proliferation. By contrast, at high antibody concentrations (50 micro/ml), ICR62 significantly increased the proliferation of U937 cells. We suggest that these results provide indirect evidence for an autocrine action of EGF on U937 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号