首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, characterization, anti-hyperglycemic activity, oxidative DNA damage capacity, and acute toxicity of chromium(III) malate complex [Cr2(LMA)3] were described. [Cr2(LMA)3] was synthesized in a single-step reaction by chelating chromium(III) with L-malic acid in aqueous solution. Based on elemental analysis, thermodynamic analysis, and spectroscopy studies, the molecular formula of [Cr2(LMA)3] was inferred as Cr2(C4H4O5)3·5H2O. Daily treatment with 2.85–17.10 mg/kg body mass of [Cr2(LMA)3] in alloxan-induced diabetic rats for 2 weeks indicated that low-molecular-weight organic chromium complex [Cr2(LMA)3] had better bioavailability and more beneficial influences on the improvement of controlling blood glucose, serum lipid, and liver glycogen levels compared with CrCl3·6H2O. [Cr2(LMA)3] did not cause oxidative DNA damage under physiologically relevant conditions. Acute toxicity studies revealed no-measurable toxicity of the [Cr2(LMA)3]. Collectively, these results suggest that [Cr2(LMA)3] may represent a novel, proper chromium supplement with potential therapeutic value to control blood glucose and serum lipid in diabetes.  相似文献   

2.
Gluconeogenic pathway in liver and muscle glycogen synthesis after exercise   总被引:1,自引:0,他引:1  
To determine whether prior exercise affects the pathways of liver and muscle glycogen synthesis, rested and postexercised rats fasted for 24 h were infused with glucose (200 mumol.min-1.kg-1 iv) containing [6-3H]glucose. Hyperglycemia was exaggerated in postexercised rats, but blood lactate levels were lower than in nonexercised rats. The percent of hepatic glycogen synthesized from the indirect pathway (via gluconeogenesis) did not differ between exercised (39%) and nonexercised (36%) rats. In red muscle, glycogen was synthesized entirely by the direct pathway (uptake and phosphorylation of plasma glucose) in both groups. However, only approximately 50% of glycogen was formed via the direct pathway in white muscle of exercised and nonexercised rats. Therefore prior exercise did not alter the pathways of tissue glycogen synthesis. To further study the incorporation of gluconeogenic precursors into muscle glycogen, exercised rats were infused with either saline, lactate (100 mumol.min-1.kg-1), or glucose (200 mumol.min-1.kg-1), containing [6-3H]glucose and [14C(U)]lactate. Plasma glucose was elevated one- to twofold and three- to fourfold by lactate and glucose infusion, respectively. Plasma lactate levels were elevated by about threefold during both glucose and lactate infusion. Glycogen was partially synthesized via an indirect pathway in white muscle and liver of glucose- or lactate-infused rats but not in saline-infused animals. Thus participation of an indirect pathway in white skeletal muscle glycogen synthesis required prolonged elevation of plasma lactate levels produced by nutritive support.  相似文献   

3.
BackgroundIn this study, chromium (III) complex was synthesized from genistein (GEN) which had good hypoglycemic activity and inorganic chromium (III) element, and its hypoglycemic activity and sub-acute toxicity were studied.MethodsThe genistein-chromium (III) complex was synthesized by chelating chromium with genistein in ethanol and its structure was determined by LC–MS, atomic absorption spectroscopy, UV–vis spectroscopy, infrared spectroscopy, elemental and thermodynamic analysis. The anti-diabetic activity of the complex was assessed in db/db mice and C57 mice by daily oral gavage for 4 weeks. The sub-acute toxicity test was carried out on KM mice with this complex.ResultsThe molecular structure of this complex was inferred as a complex [CrGEN3] formed by three ligands and one chromium element. The complex could significantly improve the body weight of db/db mice, fasting blood glucose, random blood glucose, organ index, glycogen levels and the performance of OGTT (Oral Glucose Tolerance Test) and ITT (Insulin Tolerance Test) in db/db mice (p < 0.05). The morphology of liver, kidney, pancreas and skeletal muscle also had obviously improvement and repairment. Effects on serum indices and antioxidant enzymes activities of db/db mice showed that the serum profiles and antioxidant ability of complex group had significant improvement compared with the diabetic control group (p < 0.05 or p < 0.01), and some indices even returned to normal levels. In addition, this complex did not produce any hazardous symptoms or deaths in sub-acute toxicity test. High dose of [CrGEN3] had no significant influence on serum indices and antioxidant capacity in normal mice, and the organ tissues maintained organized and integrity in the sub-acute toxicity study.ConclusionThe study of the genistein-chromium (III) complex showed that the complex had good hypoglycemic activity in vivo, and did not have the potential toxicity. These results would provide an important reference for the development of functional hypoglycemic foods or pharmaceuticals.  相似文献   

4.
The incorporation of 14C from [U-14C] glucose and 3H from 3H2O into the total lipids fatty acids and glycogen of the liver incorporation of 3H from 3H2O into blood glucose was studied in rats totally irradiated in a dose of 14.4 Gy. It is shown that in the liver of irradiated rats glucose is accumulated in considerable amounts as glycogen but it is slightly used as a source of carbon for lipid synthesis. The study of 3H incorporation shows that irradiation stimulates glucogenesis, glyconeogenesis and lipogenesis in the liver.  相似文献   

5.
The hypoglycemic activity of chromium methionine (CrMet) in alloxan-induced diabetic (AID) mice was investigated and compared with those of chromium trichloride hexahydrate (CrCl3·6H2O) and chromium nicotinate (CrNic) through a 15-day feeding experiment. The acute oral toxicity of CrMet was also investigated in ICR (Institute for Cancer Research) mice by a single oral gavage. The anti-diabetic activity of CrMet was explored in detail from the aspects of body weight (BW), blood glucose, triglyceride, total cholesterol, liver glycogen levels, aspartate transaminase (AST) and alanine transaminase (ALT) levels. The obtained results showed that CrMet had beneficial effects on glucose and lipid metabolism, and might possess hepatoprotective efficacy for diabetes. Daily treatment with 500 and 1000 μg Cr/kg BW of CrMet in AID mice for 15 days indicated that this low-molecular-weight organic chromium complex had better bioavailability and more beneficial effects on diabetics than CrCl3·6H2O. CrMet also had advantage over CrNic in the control of AST and ALT activities. Acute toxicity studies revealed that CrMet had low toxicity potential and relatively high safety margins in mice with the LD50 value higher than 10.0 g/kg BW. These findings suggest that CrMet might be of potential value in the therapy and protection of diabetes.  相似文献   

6.
1. The metabolism of hepatic glycogen, labelled with [6-3H]glucose at day 19.5 of gestation and with 14C from [U-14C]galactose at delivery, was followed for 10 h in food-deprived gsd/gsd and control (GSD/GSD) neonatal rats. 2. In the affected pups glycogen was maintained at 12% (w/w) and there was no loss of incorporated radioactivity. 3. The 3H and 14C in glycogen from the controls were both decreased by 80%, but 14C was removed at 0--5 h and [6-3H]glucose at 5--10 h. 4. Blood glucose concentrations in the unaffected neonatal rats fell from 5.3 mM at 20 min to 1.7 mM after 10 h. In the gsd/gsd pups blood glucose concentration was decreased from 2 mM at birth to 0.3 mM at 2.5 h: it was maintained at 0.8 mM between 5 and 10 h. 5. In neonatal rats that had been dead for 10 h, hepatic glycogen was decreased by 34% in the controls and by 22% in the gsd/gsd pups. These results demonstrate that liver from the affected rats contains glycogenolytic activity, but that it is not expressed in living tissue.  相似文献   

7.
Hormonal control of hepatic glycogen and blood glucose levels is one of the major homeostatic mechanisms in mammals: glycogen is synthesized when portal glucose concentration is sufficiently elevated and degraded when glucose levels are low. We have studied initial events of hepatic glycogen synthesis by injecting the synthetic glucocorticoid dexamethasone (DEX) into adrenalectomized rats fasted overnight. Hepatic glycogen levels are very low in adrenalectomized rats, and DEX causes rapid deposition of the complex carbohydrate. Investigation of the process of glycogen deposition was performed by light and electron microscopic (EM) radioautography using [3H]galactose as a glycogen precursor. Rats injected with DEX for 2-3 h and [3H]galactose one hour before being killed displayed an increasing number of intensely labeled hepatocytes. EM radioautography revealed silver grains over small (+/- 1 micron) ovoid or round areas of the cytosome that were rich in smooth endoplasmic reticulum (SER) and contained a high concentration of small dense particles. These distinct areas or foci of SER and presumptive glycogen (SERGE) were most numerous during initial periods of glycogen synthesis. After longer exposure to DEX (4-5 h) more typical deposits of cytoplasmic glycogen were evident in the SERGE regions. Several criteria indicated that the SERGE foci contained glycogen or presumptive glycogen: resemblance of the largest dense particles to beta-glycogen particles in EM; association of 3H-carbohydrate with the foci; removal of particles and label with alpha-amylase; and positive reaction with periodic acid-chromic acid-silver methenamine. The concentration of SER in the small foci and the association of newly formed glycogen particles with elements of SER suggest a role for this organelle in the initial synthesis of glycogen.  相似文献   

8.
1. A trace amount of glucose labelled with 14C uniformly and with 3H at position 2, 3 or 6 was injected intravenously into starved rats to measure the turnover rate of blood glucose. 2. Reliable estimates were made based on the semilogarithmic plot of specific radioactivity of the glucose contained in whole blood samples taken from the tail vein. 3. Glucose turned over more rapidly in hyperthyroid and more slowly in hypothyroid than in euthyroid rats. The percentage contribution of glucose recycling (determined from the difference in replacement rates between [U-14C]glucose and [6-3H]glucose) to the glucose utilization increased on induction of hyperthyroidism. 4. Futile cycles between glucose and glucose 6-phosphate (determined from the difference between replacement rates of [2-3H]glucose and [6-3H]glucose) were activated and inactivated by induction of hyperthyroid and hypothyroid states respectively. 5. The hepatic content of glycogen was much lower in hyper- and hypo-thyroid than in euthyroid rats. The enhanced glucose production in hyperthyroid rats resulted from not only activationof hepatic gluconeogenesis but also diversion of the final product of gluconeogenesis from liver glycogen to blood glucose. In hypothyroidism, the inhibition of gluconeogensis led to suppression of both glucose production and glycogenesis in the liver.  相似文献   

9.
In chronically catheterized rats hepatic glycogen was increased by fructose (approximately 10 g/kg) gavage (FF rats) or lowered by overnight food restriction (FR rats). [3-3H]- and [U-14C]glucose were infused before, during, and after treadmill running. During exercise the increase in glucose production (Ra) was always directly related to work intensity and faster than the increase in glucose disappearance, resulting in increased plasma glucose levels. At identical work-loads the increase in Ra and plasma glucose as well as liver glycogen breakdown were higher in FF and control (C) rats than in FR rats. Breakdown of muscle glycogen was less in FF than in C rats. Incorporation of [14C]glucose in glycogen at rest and mobilization of label during exercise partly explained that 14C estimates of carbohydrate metabolism disagreed with chemical measurements. In some muscles glycogen depletion was not accompanied by loss of 14C and 3H, indicating futile cycling of glucose. In FR rats a postexercise increase in liver glycogen was seen with 14C/3H similar to that of plasma glucose, indicating direct synthesis from glucose. In conclusion, in exercising rats the increase in glucose production is subjected to feedforward regulation and depends on the liver glycogen concentration. Endogenous glucose may be incorporated in glycogen in working muscle and may be used directly for liver glycogen synthesis rather than after conversion to trioses. Fructose ingestion may diminish muscular glycogen breakdown. The [14C]glucose infusion technique for determination of muscular glycogenolysis is of doubtful value in rats.  相似文献   

10.
1. The overall metabolic changes in lactating mammary gland in alloxan-diabetic and anti-insulin-serum-treated rats were assessed by measurement of the incorporation of (14)C from specifically labelled glucose, pyruvate and acetate into carbon dioxide and lipid, together with measurements of enzymes concerned with the pentose phosphate pathway and with citrate metabolism. 2. Alloxan-diabetes depressed the rate of formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose to approx. 10% of the control rate; this was partially reversed by addition of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.9 in the diabetic group and was restored to 14.3 in the presence of insulin in vitro. In keeping with these results it was shown that glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were significantly decreased in alloxan-diabetic rats. 3. Alloxan-diabetes depressed the decarboxylation and the oxidation of labelled pyruvate, but not the oxidation of labelled acetate. 4. The synthesis of lipid from specifically labelled glucose was greatly decreased, that from [2-(14)C]pyruvate was almost unchanged and that from [1-(14)C]acetate alone was increased in alloxandiabetic rats. However, the stimulation of lipid synthesis from acetate by glucose was small in the alloxan-diabetic rats compared with the controls. Insulin in vitro partially reversed all these effects. Both citrate-cleavage enzyme and acetate thiokinase activities were decreased in alloxan-diabetic rats. 5. Treatment of rats with anti-insulin serum depressed the formation of (14)CO(2) from [1-(14)C]glucose and [2-(14)C]glucose, but increased that from [6-(14)C]glucose. This was completely restored by the presence of insulin in vitro. The quotient Oxidation of [1-(14)C]glucose/Oxidation of [6-(14)C]glucose fell from a value of 17.6 in the control group to 3.8 in the anti-insulin-serum-treated group. There were no changes in the activity of glucose 6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, but the hexokinase distribution changed and the content of the soluble fraction increased significantly. 6. The synthesis of lipid from specifically labelled glucose was depressed in anti-insulin-serum-treated rats; this effect was completely reversed by addition of insulin in vitro to the tissue slices.  相似文献   

11.
NMR measurements of in vivo myocardial glycogen metabolism   总被引:6,自引:0,他引:6  
Using 13C and 1H NMR we measured the rate of glycogen synthesis (0.23 +/- 0.10 mumol/min gram wet weight tissue (gww) in rat heart in vivo during an intravenous infusion of D-[1-13C]glucose and insulin. Glycogen was observed within 10 min of starting and increased linearly throughout a 50-min infusion. This compared closely with the average activity of glycogen synthase I (0.22 +/- 0.03 mumol/min gww) measured at physiologic concentrations of UDP-glucose (92 microM) and glucose-6-phosphate (110 microM). When unlabeled glycogen replaced D-[1-13C]glucose in the infusate after 50 min the D-[1-13C]glycogen signal remained stable for another 60 min, indicating that no turnover of the newly synthesized glycogen had occurred. Despite this phosphorylase a activity in heart extracts from rats given a 1 h glucose and insulin infusion (3.8 +/- 2.4 mumol/min gww) greatly exceeded the total synthase activity and if active in vivo should promote glycogenolysis. We conclude that during glucose and insulin infusion in the rat: (a) the absolute rate of myocardial glycogen synthesis can be measured in vivo by NMR; (b) glycogen synthase I can account for the observed rates of heart glycogen synthesis; (c) there is no futile cycling of glucose in and out of heart glycogen; and (d) the activity of phosphorylase a measured in tissue extracts is not reflected in vivo. These studies raise the question whether significant regulation of phosphorylase a activity in vivo is mediated by factors in addition to its phosphorylation state.  相似文献   

12.
After a pulse of [3-14C]pyruvate, 24 hr starved rats were infused through the portal vein with two different doses of glucose (7.8 or 20.8 mg/min) or the medium, and blood was collected from the inferior cava vein at the level of the suprahepatic veins. The highest dose of glucose enhanced the appearance of [14C]glucose in blood from the 2nd to the 20th min after tracer delivery. It also enhanced production of [14C]glycogen and concentration of glycogen in the liver after 5 and 20 min. At 20 min of glucose infusion the appearance of [14C]glyceride glycerol in liver as well as liver lactate concentration and lactate/pyruvate ratio were increased. The low dose of glucose used enhanced liver values of [14C]glycogen, [14C]glycogen specific activity and glycogen concentration. Our results support the hypothesis that in the starved rat glucose is converted into C3 units prior to being deposited as liver glycogen and based on the liver zonation model (Jungermann et al., 1983) it is proposed that glucose stimulated gluconeogenesis by shifting the liver to the cytosolic redox state as a secondary consequence of increased glycolytic activity.  相似文献   

13.
In order to obtain the additional benefit of anti-diabetic activity and protective effects of liver injury for diabetes, the anti-diabetic effect and acute oral toxicity of a combination of chromium(III) malate complex (Cr(2)(LMA)(3)) and propolis were assessed. The anti-diabetic activity of the combination of the Cr(2)LMA(3) and propolis was compared with Cr(2)(LMA)(3) and propolis alone in alloxan-induced diabetic mice by daily oral gavage for a period of 2 weeks. Acute oral toxicity of the combination of the Cr(2)LMA(3) and propolis was tested using ICR mice at the dose of 1.0-5.0 g/kg body mass by a single oral gavage and observed for a period of 2 weeks. The results of the anti-diabetic activity of the combination from the aspects of blood glucose level, liver glycogen level, and the activities of aspartate transaminase, alanine transaminase, and alkaline phosphatase indicated that the increased anti-diabetic activity and the protective efficacy of liver injury for diabetes were observed. In acute toxicity study, LD(50) (median lethal dose) value for the combination was greater than 5.0 g/kg body mass. The combination of Cr(2)LMA(3) and propolis might represent the nutritional supplement with potential therapeutic value to control blood glucose and exhibit protective efficacy of liver injury for diabetes and non-toxicity in acute toxicity.  相似文献   

14.
1. Livers from fed rats were perfused in situ with whole rat blood containing glucose labelled uniformly with (14)C and specifically with (3)H at positions 2, 3 or 6. 2. When ethanol was infused at a concentration of 24mumol/ml of blood the rate of utilization was 2.8mumol/min per g of liver. 3. Ethanol infusion raised perfusate glucose concentrations and caused a 2.5-fold increase in hepatic glucose output. 4. Final blood lactate concentrations were decreased in ethanol-infused livers, but the mean uptake of lactate from erythrocyte glycolysis was unaffected. 5. Production of ketone bodies (3-hydroxybutyrate+3-oxobutyrate) and the ratio [3-hydroxybutyrate]/[3-oxobutyrate] were raised by ethanol. 6. Formation of (3)H(2)O from specifically (3)H-labelled glucoses increased in the order [6-(3)H]<[3-(3)H]<[2-(3)H]. Production of (3)H(2)O from [2-(3)H]glucose was significantly greater than that from [3-(3)H]glucose in both control and ethanol-infused livers. Ethanol significantly decreased (3)H(2)O formation from all [(3)H]glucoses. 7. Liver glycogen content was unaffected by ethanol infusion. 8. Production of very-low-density lipoprotein triacylglycerols was inhibited by ethanol and there was a small increase in liver triacylglycerols. Very-low-density-lipoprotein secretion was negatively correlated with the ratio [3-hydroxybutyrate]/[3-oxobutyrate]. Perfusate fatty acid concentrations and molar composition were unaffected by perfusion with ethanol. 9. Ethanol decreased the incorporation of [U-(14)C]glucose into fatty acids and cholesterol. 10. The concentration of total plasma amino acids was unchanged by ethanol, but the concentrations of alanine and glycine were decreased and ([glutamate]+[glutamine]) was raised. 11. It is proposed that the observed effects of ethanol on carbohydrate metabolism are due to an increased conversion of lactate into glucose, possibly by inhibition of pyruvate dehydrogenase. The increase in gluconeogenesis is accompanied by diminished substrate cycling at glucose-glucose 6-phosphate and at fructose 6-phosphate-fructose 1,6-bisphosphate.  相似文献   

15.
Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasis.  相似文献   

16.
We set out to study the pentose phosphate pathway (PPP) in isolated rat hearts perfused with [5-3H]glucose and [1-14C]glucose or [6-14C]glucose (crossover study with 1- then 6- or 6- then 1-14C-labeled glucose). To model a physiological state, hearts were perfused under working conditions with Krebs-Henseleit buffer containing 5 mM glucose, 40 microU/ml insulin, 0.5 mM lactate, 0.05 mM pyruvate, and 0.4 mM oleate/3% albumin. The steady-state C1/C6 ratio (i.e., the ratio from [1-14C]glucose to [6-14C]glucose) of metabolites released by the heart, an index of oxidative PPP, was not different from 1 (1.06 +/- 0.19 for 14CO2, and 1.00 +/- 0.01 for [14C]lactate + [14C]pyruvate, mean +/- SE, n = 8). Hearts exhibited contractile, metabolic, and 14C-isotopic steady state for glucose oxidation (14CO2 production). Net glycolytic flux (net release of lactate + pyruvate) and efflux of [14C]lactate + [14C]pyruvate were the same and also exhibited steady state. In contrast, flux based on 3H2O production from [5-3H]glucose increased progressively, reaching 260% of the other measures of glycolysis after 30 min. The 3H/14C ratio of glycogen (relative to extracellular glucose) and sugar phosphates (representing the glycogen precursor pool of hexose phosphates) was not different from each other and was <1 (0.36 +/- 0.01 and 0.43 +/- 0.05 respectively, n = 8, P < 0.05 vs. 1). We conclude that both transaldolase and the L-type PPP permit hexose detritiation in the absence of net glycolytic flux by allowing interconversion of glycolytic hexose and triose phosphates. Thus apparent glycolytic flux obtained by 3H2O production from [5-3H]glucose overestimates the true glycolytic flux in rat heart.  相似文献   

17.
Glycogen synthesis was examined in primary cultures of adult rat hepatocytes that had been isolated from rats following a 24-h fast. Glycogen synthesis was dependent on the concentration of glucose in the culture medium and also required the presence of insulin. The addition of dexamethasone to the culture medium also increased the amount of glycogen synthesis. When the culture medium was supplemented with [U-14C,3-3H]glucose, it was found that approximately 60% of the glucose incorporated into glycogen was not derived from the pool of labeled glucose. In addition, the relative ratio of 3H/14C in the newly synthesized glycogen was approximately 50% of the ratio of the two isotopes in glucose in the culture medium, indicating that the glucose had undergone metabolism prior to its incorporation into glycogen. However, when hepatocytes were isolated from rats that had been fed ad libitum and the synthesis of glycogen from [U-14C,3-3H]glucose was followed, the relative ratio of the two isotopes in glycogen was similar to that measured for glucose in the culture medium, indicating that the glucose was directly incorporated into glycogen without any apparent metabolism. These results indicate that the synthesis of glycogen from glucose may, at least in part, follow an indirect pathway whereby glucose is metabolized prior to incorporation of the carbon into glycogen, but that the pathway followed for the synthesis of glycogen is dependent on the prior metabolic state of the animal.  相似文献   

18.
Hepatic glucose fluxes and intracellular movement of glucokinase (GK) in response to increased plasma glucose and insulin were examined in 10-wk-old, 6-h-fasted, conscious Zucker diabetic fatty (ZDF) rats and lean littermates. Under basal conditions, plasma glucose (mmol/l) and glucose turnover rate (GTR; micromol.kg(-1).min(-1)) were slightly higher in ZDF (8.4 +/- 0.3 and 53 +/- 7, respectively) than in lean rats (6.2 +/- 0.2 and 45 +/- 4, respectively), whereas plasma insulin (pmol/l) was higher in ZDF (1,800 +/- 350) than in lean rats (150 +/- 14). The ratio of hepatic uridine 5'-diphosphate-glucose 3H specific activity to plasma glucose 3H specific activity ([3H]UDP-G/[3H]G; %), total hepatic glucose output (micromol.kg(-1).min(-1)), and hepatic glucose cycling (micromol.kg(-1).min(-1)) were higher in ZDF (35 +/- 5, 87 +/- 16, and 33 +/- 10, respectively) compared with lean rats (18 +/- 3, 56 +/- 6, and 11 +/- 2, respectively). [3H]glucose incorporation into glycogen (micromol glucose/g liver) was similar in lean (1.0 +/- 0.7) and ZDF (1.6 +/- 0.8) rats. GK was predominantly located in the nucleus in both rats. With elevated plasma glucose and insulin, GTR (micromol.kg(-1).min(-1)), [3H]UDP-G/[3H]G (%), and [3H]glucose incorporation into glycogen (micromol glucose/g liver) were markedly higher in lean (191 +/- 22, 62 +/- 3, and 5.0 +/- 1.4, respectively) but similar in ZDF rats (100 +/- 6, 37 +/- 3, and 1.4 +/- 0.4, respectively) compared with basal conditions. GK translocation from the nucleus to the cytoplasm occurred in lean but not in ZDF rats. The unresponsiveness of hepatic glucose flux to the rise in plasma glucose and insulin seen in prediabetic ZDF rats was associated with impaired GK translocation.  相似文献   

19.
Abstract— Slices from the cerebral cortices of normal and alloxan-diabetic rats were incubated with [U-24C]glucose. When insulin was added to the incubation medium the incorporation of 14C into glycogen was significantly increased in both groups. Insulin did not appear to have any significant effect on the incorporation of 14C into carbon dioxide.  相似文献   

20.
Glycolysis, measured by (3)H(2)O production from [5-(3)H]glucose, is accelerated in isolated working hypertrophied rat hearts. However, nonglycolytic detritiation of [5-(3)H]glucose via the nonoxidative pentose phosphate pathway (PPP) could potentially lead to an overestimation of true glycolytic rates, especially in hypertrophied hearts where the PPP may be upregulated. To address this concern, we measured glycolysis using [5-(3)H]glucose and a second, independent method in isolated working hearts from halothane-anesthetized, sham-operated and aortic-constricted rats. Glycolysis was accelerated in hypertrophied hearts compared with control hearts regardless of the method used. There was also excellent concordance in glycolytic rates between the different methods. Moreover, activity of glucose-6-phosphate dehydrogenase and expression of transaldolase, enzymes controlling key steps in the oxidative and nonoxidative PPP, respectively, were not different between control and hypertrophied hearts. Thus nonglycolytic detritiation of [5-(3)H]glucose in the PPP is insignificant, and (3)H(2)O production from [5-(3)H]glucose is an accurate means to measure glycolysis in isolated working normal and hypertrophied rat hearts. Furthermore, the PPP does not appear to be increased in cardiac hypertrophy induced by abdominal aortic constriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号