首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of herpes simplex virus type 1 (HSV-1) involves a step in which a parental capsid docks onto a host nuclear pore complex (NPC). The viral genome then translocates through the nuclear pore into the nucleoplasm, where it is transcribed and replicated to propagate infection. We investigated the roles of viral and cellular proteins in the process of capsid-nucleus attachment. Vero cells were preloaded with antibodies specific for proteins of interest and infected with HSV-1 containing a green fluorescent protein-labeled capsid, and capsids bound to the nuclear surface were quantified by fluorescence microscopy. Results showed that nuclear capsid attachment was attenuated by antibodies specific for the viral tegument protein VP1/2 (UL36 gene) but not by similar antibodies specific for UL37 (a tegument protein), the major capsid protein (VP5), or VP23 (a minor capsid protein). Similar studies with antibodies specific for nucleoporins demonstrated attenuation by antibodies specific for Nup358 but not Nup214. The role of nucleoporins was further investigated with the use of small interfering RNA (siRNA). Capsid attachment to the nucleus was attenuated in cells treated with siRNA specific for either Nup214 or Nup358 but not TPR. The results are interpreted to suggest that VP1/2 is involved in specific attachment to the NPC and/or in migration of capsids to the nuclear surface. Capsids are suggested to attach to the NPC by way of the complex of Nup358 and Nup214, with high-resolution immunofluorescence studies favoring binding to Nup358.  相似文献   

2.
3.
Nuclear pore complexes (NPCs) traverse the nuclear envelope (NE), providing a channel through which nucleocytoplasmic transport occurs. Nup358/RanBP2, Nup214/CAN, and Nup88 are components of the cytoplasmic face of the NPC. Here we show that Nup88 localizes midway between Nup358 and Nup214 and physically interacts with them. RNA interference of either Nup88 or Nup214 in human cells caused a strong reduction of Nup358 at the NE. Nup88 and Nup214 showed an interdependence at the NPC and were not affected by the absence of Nup358. These data indicate that Nup88 and Nup214 mediate the attachment of Nup358 to the NPC. We show that localization of the export receptor CRM1 at the cytoplasmic face of the NE is Nup358 dependent and represents its empty state. Also, removal of Nup358 causes a distinct reduction in nuclear export signal-dependent nuclear export. We propose that Nup358 provides both a platform for rapid disassembly of CRM1 export complexes and a binding site for empty CRM1 recycling into the nucleus.  相似文献   

4.
The role of the adenovirus protease on virus entry into cells.   总被引:9,自引:2,他引:7       下载免费PDF全文
U F Greber  P Webster  J Weber    A Helenius 《The EMBO journal》1996,15(8):1766-1777
Adenovirus uncoating is a stepwise process which culminates in the release of the viral DNA into the nucleus through the nuclear pore complexes and dissociation of the capsid. Using quantitative biochemical, immunochemical and morphological methods, we demonstrate that inhibitors of the cystine protease, L3/p23, located inside the capsid block the degradation of the capsid-stabilizing protein VI, and prevent virus uncoating at the nuclear membrane. There was no effect on virus internalization, fiber shedding and virus binding to the nuclear envelope. The viral enzyme (dormant in the extracellular virus) was activated by two separate signals, neither of which was sufficient alone; virus interaction with the integrin receptor (inhibited with RGD peptides) and re-entry of the virus particle into a reducing environment in the endosome or the cytosol. Incorrectly assembled mutant viruses that lack the functional protease (ts1) failed at releasing fibers and penetrating into the cytosol. The results indicated that L3/p23 is needed not only to assemble an entry-competent virus but also to disassemble the incoming virus.  相似文献   

5.
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

6.
Function and assembly of nuclear pore complex proteins.   总被引:5,自引:0,他引:5  
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC.  相似文献   

7.
The nuclear pore complex (NPC) conducts macromolecular transport to and from the nucleus and provides a kinetic/hydrophobic barrier composed of phenylalanine-glycine (FG) repeats. Nuclear transport is achieved through permeation of this barrier by transport receptors. The transport receptor CRM1 facilitates export of a large variety of cargoes. Export of the preribosomal 60 S subunit follows this pathway through the adaptor protein NMD3. Using RNA interference, we depleted two FG-containing cytoplasmically oriented NPC complexes, Nup214-Nup88 and Nup358, and investigated CRM1-mediated export. A dramatic defect in NMD3-mediated export of preribosomes was found in Nup214-Nup88-depleted cells, whereas only minor export defects were evident in other CRM1 cargoes or upon depletion of Nup358. We show that the large C-terminal FG domain of Nup214 is not accessible to freely diffusing molecules from the nucleus, indicating that it does not conduct 60 S preribosomes through the NPC. Consistently, derivatives of Nup214 lacking the FG-repeat domain rescued the 60 S export defect. We show that the coiled-coil region of Nup214 is sufficient for 60 S nuclear export, coinciding with recruitment of Nup88 to the NPC. Our data indicate that Nup214 plays independent roles in NPC function by participating in the kinetic/hydrophobic barrier through its FG-rich domain and by enabling NPC gating through association with Nup88.  相似文献   

8.
During entry, herpes simplex virus type 1 (HSV-1) releases its capsid and the tegument proteins into the cytosol of a host cell by fusing with the plasma membrane. The capsid is then transported to the nucleus, where it docks at the nuclear pore complexes (NPCs), and the viral genome is rapidly released into the nucleoplasm. In this study, capsid association with NPCs and uncoating of the viral DNA were reconstituted in vitro. Isolated capsids prepared from virus were incubated with cytosol and purified nuclei. They were found to bind to the nuclear pores. Binding could be inhibited by pretreating the nuclei with wheat germ agglutinin, anti-NPC antibodies, or antibodies against importin beta. Furthermore, in the absence of cytosol, purified importin beta was both sufficient and necessary to support efficient capsid binding to nuclei. Up to 60 to 70% of capsids interacting with rat liver nuclei in vitro released their DNA if cytosol and metabolic energy were supplied. Interaction of the capsid with the nuclear pore thus seemed to trigger the release of the viral genome, implying that components of the NPC play an active role in the nuclear events during HSV-1 entry into host cells.  相似文献   

9.
10.
11.
The role of the nuclear pore complex in adenovirus DNA entry.   总被引:20,自引:1,他引:19       下载免费PDF全文
Adenovirus targets its genome to the cell nucleus by a multistep process involving endocytosis, membrane penetration and cytoplasmic transport, and finally imports its DNA into the nucleus. Using an immunochemical and biochemical approach combined with inhibitors of nuclear import, we demonstrate that incoming viral DNA and DNA-associated protein VII enter the nucleus via nuclear pore complexes (NPCs). Depletion of calcium from nuclear envelope and endoplasmic reticulum cisternae by ionophores or thapsigargin blocked DNA and protein VII import into the nucleus, but had no effect on virus targeting to NPCs. Calcium-depleted cells were capable of disassembling incoming virus. In contrast, inhibitors of cytosolic O-linked glycoproteins of the NPC blocked virus attachment to the nuclear envelope, capsid disassembly and also nuclear import of protein VII. The data indicate that NPCs have multiple roles in adenovirus entry into cells: they contain a virus-binding and/or dissociation activity and provide a gateway for the incoming DNA genome into the nucleus.  相似文献   

12.
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

13.
Nucleoporins represent the molecular building blocks of nuclear pore complexes (NPCs), which mediate facilitated macromolecular trafficking between the cytoplasm and nucleus of eukaryotic cells. Phenylalanine-glycine (FG) repeat motifs are found in about one-third of the nucleoporins, and they provide major binding or docking sites for soluble transport receptors. We have shown recently that localization of the FG-repeat domains of vertebrate nucleoporins Nup153 and Nup214 within the NPC is influenced by its transport state. To test whether chemical effectors, such as calcium and ATP, influence the localization of the FG-repeat domains of Nup153 and Nup214 within the NPC, we performed immuno-electron microscopy of Xenopus oocyte nuclei using domain-specific antibodies against Nup153 and Nup214, respectively. Ca2+ and ATP are known to induce conformational changes in the NPC architecture, especially at the cytoplasmic face, but also at the nuclear basket of the NPC. We have found concentrations of calcium in the micromolar range or 1 mM ATP in the surrounding buffer leaves the spatial distribution of the FG-repeat of Nup153 and Nup214 largely unchanged. In contrast, ATP depletion, calcium store depletion by EGTA or thapsigargin, and high concentrations of divalent cation (i.e. 2 mM Ca2+ and 2 mM Mg2+) constrain the distribution of the FG-repeats of Nup153 and Nup214. Our data suggest that the location of the FG-repeat domains of Nup153 and Nup214 is sensitive to chemical changes within the near-field environment of the NPC.  相似文献   

14.
Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of approximately 70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.  相似文献   

15.
Li  Xia  Wang  Dianbing  Cui  Zongqiang  Li  Qin  Li  Min  Ma  Yingxin  Hu  Qinxue  Zhou  Yikai  Zhang  Xian-En 《中国科学:生命科学英文版》2021,64(1):66-76
It is recognized that HIV-1 capsid cores are disassembled in the cytoplasm, releasing their genomes into the nucleus through nuclear pores, but there is also evidence showing the capsid(CA) exists in the nucleus. Whether HIV-1 enters the nucleus and how it enters the nucleus through the undersized nuclear pore remains mysterious. Based on multicolor labeling and real-time imaging of the viral and cellular components, our observations via light and electron microscopy suggest that HIV-1 selectively gathered at the microtubule organization center(MTOC), leading the nearby nuclear envelope(NE) to undergo deformation,invagination and restoration to form a nuclear vesicle in which the viral particles were wrapped; then, the inner membrane of the nuclear vesicle ruptured to release HIV-1 into the nucleus. This unexpected discovery expands our understanding of the complexity of HIV-1 nuclear entry, which may provide new insights to HIV-1 virology.  相似文献   

16.
The nuclear pore complex (NPC) is both the major conduit for nucleocytoplasmic trafficking and a platform for organizing macromolecules at the nuclear envelope. We report that yeast Esc1, a non-NPC nuclear envelope protein, is required both for proper assembly of the nuclear basket, a structure extending into the nucleus from the NPC, and for normal NPC localization of the Ulp1 SUMO protease. In esc1Delta cells, Ulp1 and nuclear basket components Nup60 and Mlp1 no longer distribute broadly around the nuclear periphery, but co-localize in a small number of dense-staining perinuclear foci. Loss of Esc1 (or Nup60) alters SUMO conjugate accumulation and enhances ulp1 mutant defects. Similar to previous findings with Mlp1, both Esc1 and Ulp1 help retain unspliced pre-mRNAs in the nucleus. Therefore, these proteins are essential for proper nuclear basket function, which includes mRNA surveillance and regulation of SUMO protein dynamics. The results raise the possibility that NPC-localized protein desumoylation may be a key regulatory event preventing inappropriate pre-mRNA export.  相似文献   

17.
The nuclear pore complex (NPC) mediates nucleo-cytoplasmic transport of macromolecules and is an obligatory point of passage and functional bottleneck in the replication of some viruses. The Human Immunodeficiency Virus (HIV) has evolved the required mechanisms for active nuclear import of its genome through the NPC. However the mechanisms by which the NPC allows or even assists HIV translocation are still unknown. We investigated the involvement of four key nucleoporins in HIV-1 docking, translocation, and integration: Nup358/RanBP2, Nup214/CAN, Nup98 and Nup153. Although all induce defects in infectivity when depleted, only Nup153 actually showed any evidence of participating in HIV-1 translocation through the nuclear pore. We show that Nup358/RanBP2 mediates docking of HIV-1 cores on NPC cytoplasmic filaments by interacting with the cores and that the C-terminus of Nup358/RanBP2 comprising a cyclophilin-homology domain contributes to binding. We also show that Nup214/CAN and Nup98 play no role in HIV-1 nuclear import per se: Nup214/CAN plays an indirect role in infectivity read-outs through its effect on mRNA export, while the reduction of expression of Nup98 shows a slight reduction in proviral integration. Our work shows the involvement of nucleoporins in diverse and functionally separable steps of HIV infection and nuclear import.  相似文献   

18.
Nuclear pore complexes (NPCs) facilitate macromolecular exchange between the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of approximately 30 different proteins (nucleoporins), of which around one third contain phenylalanine-glycine (FG)-repeat domains that are thought to mediate the main interaction between the NPC and soluble transport receptors. We have recently shown that the FG-repeat domain of Nup153 is flexible within the NPC, although this nucleoporin is anchored to the nuclear side of the NPC. By using domain-specific antibodies, we have now mapped the domain topology of Nup214 in Xenopus oocytes and in human somatic cells by immuno-EM. We have found that whereas Nup214 is anchored to the cytoplasmic side of the NPC via its N-terminal and central domain, its FG-repeat domain appears flexible, residing on both sides of the NPC. Moreover, the spatial distribution of the FG-repeat domains of both Nup153 and Nup214 shifts in a transport-dependent manner, suggesting that the location of FG-repeat domains within the NPC correlates with cargo/receptor interactions and that they concomitantly move with cargo through the central pore of the NPC.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen infecting more than 80% of the population worldwide. Its replication involves an essential, poorly understood multistep process, referred to as uncoating. Uncoating steps are as follows: (1) The incoming capsid pinpoints the nuclear pore complex (NPC). (2) It opens up at the NPC and releases the highly pressurized viral genome. (3) The viral genome translocates through the NPC. In the present review, we highlight recent advances in this field and propose mechanisms underlying the individual steps of uncoating. We presume that the incoming HSV-1 capsid pinpoints the NPC by hydrophobic interactions and opens up upon binding to NPC proteins. Genome translocation is initially pressure-driven.  相似文献   

20.
The oncogenic nucleoporin CAN/Nup214 is essential in vertebrate cells. Its depletion results in defective nuclear protein import, inhibition of messenger RNA export and cell cycle arrest. We recently found that CAN associates with proteins of 88 and 112 kDa, which we have now cloned and characterized. The 88 kDa protein is a novel nuclear pore complex (NPC) component, which we have named Nup88. Depletion of CAN from the NPC results in concomitant loss of Nup88, indicating that the localization of Nup88 to the NPC is dependent on CAN binding. The 112 kDa protein is the human homologue of yeast CRM1, a protein known to be required for maintenance of correct chromosome structure. This human CRM1 (hCRM1) localized to the NPC as well as to the nucleoplasm. Nuclear overexpression of the FG-repeat region of CAN, containing its hCRM1-interaction domain, resulted in depletion of hCRM1 from the NPC. In CAN-/- mouse embryos lacking CAN, hCRM1 remained in the nuclear envelope, suggesting that this protein can also bind to other repeat-containing nucleoporins. Lastly, hCRM1 shares a domain of significant homology with importin-beta, a cytoplasmic transport factor that interacts with nucleoporin repeat regions. We propose that hCRM1 is a soluble nuclear transport factor that interacts with the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号