首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9-11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway.  相似文献   

2.
microRNAs (miRNAs) are generally thought to negatively regulate the expression of their target genes by mRNA degradation or by translation repression. Here we show an efficient way to identify miRNA target genes by screening alterations in global mRNA levels following changes in miRNA levels. In this study, we used mRNA microarrays to measure global mRNA expression in three cell lines with increased or decreased levels of miR-16 and performed bioinformatics analysis based on multiple target prediction algorithms. For further investigation among the predicted miR-16 target genes, we selected genes that show an expression pattern opposite to that of miR-16. One of the candidate target genes that may interact with miR-16, ADP-ribosylation factor-like protein 2 (ARL2), was further investigated. First, ARL2 was deduced to be an ideal miR-16 target by computational predictions. Second, ARL2 mRNA and protein levels were significantly abolished by treatment with miR-16 precursors, whereas a miR-16 inhibitor increased ARL2 mRNA and protein levels. Third, a luciferase reporter assay confirmed that miR-16 directly recognizes the 3'-untranslated region (3'-UTR) of ARL2. Finally, we showed that miR-16 could regulate proliferation and induce a significant G0/G1 cell cycle arrest, which was due at least in part, to the down-regulation of ARL2. In summary, the present study suggests that integrating global mRNA profiling and bioinformatics tools may provide the basis for further investigation of the potential targets of a given miRNA. These results also illustrate a novel function of miR-16 targeting ARL2 in modulating proliferation and cell cycle progression.  相似文献   

3.
Liu Q  Fu H  Sun F  Zhang H  Tie Y  Zhu J  Xing R  Sun Z  Zheng X 《Nucleic acids research》2008,36(16):5391-5404
  相似文献   

4.
Recent investigations have shown tumor-suppressive roles for miR-16 and miR-34a. They also share some features in regard to targeting cancer cell signaling pathways which they control. Therefore, in this study, we aimed to further scrutinize whether exogenous induction of mature miR-34a and miR-16 can collaborate in breast tumor suppression. MDA-MB-231 and SK-BR-3 human breast cancer cell lines were cultured and transfected twice with hsa-miR-16-5p and hsa-miR-34a-5p mimics individually or in combination. The cells were analyzed for apoptosis rate and cell cycle indices by flow cytometry. Also, the expression of several invasion and the epithelial-mesenchymal transition markers was evaluated at gene and protein levels by quantitative real-time polymerase chain reaction and western blot analysis, respectively. Assessment of invasiveness and migratory potential of the transfected cells was performed using three-dimensional spheroid formation and wound-healing assay, respectively. In both cell lines, miR-16 and miR-34a induced apoptosis and cell-cycle arrest and also suppressed invasion and migration. Some of these effects, like cell-cycle arrest and induction of apoptosis, were significantly higher when using both microRNAs than when using them individually for transfection of the cells. Our results are indicating that miR-16 and miR-34a can collaborate in breast tumor suppression.  相似文献   

5.
6.
7.

Background

MicroRNAs (miRNAs) are short single stranded noncoding RNAs that suppress gene expression through either translational repression or degradation of target mRNAs. The annealing between messenger RNAs and 5′ seed region of miRNAs is believed to be essential for the specific suppression of target gene expression. One miRNA can have several hundred different targets in a cell. Rapidly accumulating evidence suggests that many miRNAs are involved in cell cycle regulation and consequentially play critical roles in carcinogenesis.

Methodology/Principal Findings

Introduction of synthetic miR-107 or miR-185 suppressed growth of the human non-small cell lung cancer cell lines. Flow cytometry analysis revealed these miRNAs induce a G1 cell cycle arrest in H1299 cells and the suppression of cell cycle progression is stronger than that by Let-7 miRNA. By the gene expression analyses with oligonucleotide microarrays, we find hundreds of genes are affected by transfection of these miRNAs. Using miRNA-target prediction analyses and the array data, we listed up a set of likely targets of miR-107 and miR-185 for G1 cell cycle arrest and validate a subset of them using real-time RT-PCR and immunoblotting for CDK6.

Conclusions/Significance

We identified new cell cycle regulating miRNAs, miR-107 and miR-185, localized in frequently altered chromosomal regions in human lung cancers. Especially for miR-107, a large number of down-regulated genes are annotated with the gene ontology term ‘cell cycle’. Our results suggest that these miRNAs may contribute to regulate cell cycle in human malignant tumors.  相似文献   

8.
Re-entry into the cell cycle from quiescence requires the activation of mitogen-activated protein (MAP) kinases of the extracellular-signal-regulated kinase (ERK) family [1,2]. The relationship between ERK and cell-cycle control is, however, complex, as ERK activation can also lead to terminal differentiation [3] or a senescence-like growth arrest [4]. Here, we report that reversible cell-cycle exit induced by serum withdrawal in primary avian fibroblasts is associated with rapid deactivation of ERK, but ERK activity is subsequently regenerated and sustained at high levels in fully quiescent (G0) cells. As in proliferating cells, ERK activation during G0 required the MAPkinase kinase MEK and was partially dependent on cell adhesion. Active, phosphorylated ERK was concentrated in the nucleus in cycling cells, but was largely confined to the cytoplasm during G0. This was unexpected, as activatory phosphorylation mediated by MEK is thought to play an important role in promoting nuclear translocation [5,6]. These results indicate that transient deactivation of ERK signalling can be sufficient for stable cell-cycle exit, and that MEK-mediated phosphorylation is not sufficient for nuclear translocation of active ERK in G0. Cytoplasmic sequestration may prevent active ERK from accessing critical nuclear cell-cycle targets, thus allowing quiescent or post-mitotic cells to retain ERK activity for other physiological functions.  相似文献   

9.
Prostate cancer (CaP) is the second most common cancer in men worldwide in 2012, and radiation therapy is one of the most common definitive treatment options for localized CaP. However, radioresistance is a major challenge for the current radiotherapy, accumulating evidences suggest microRNAs (miRNAs), as an important regulator in cellular ionizing radiation (IR) responses, are closely correlated with radiosensitivity in many cancers. Here, we identified microRNA-16-5p(miR-16-5p) is significantly upregulated in CaP LNCaP cells following IR and can enhance radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway. To identify the expression profile of miRNAs in CaP cells exposed to IR, we performed human miRNA probe hybridization chip analysis and miR-16-5p was found to be significantly overexpressed in all treatment groups that irradiated with different doses of X-rays and heavy ions (12C6+). Furthermore, overexpression of miR-16-5p suppressed cell proliferation, reduced cell viability, and induced cell cycle arrest at G0/G1 phase, resulting in enhanced radiosensitivity in LNCaP cells. Additionally, miR-16-5p specifically targeted the Cyclin D1/E1–3′-UTR in LNCaP cells and affected the expression of Cyclin D1/E1 in both mRNA and protein levels. Taken together, miR-16-5p enhanced radiosensitivity of CaP cells, the mechanism may be through modulating Cyclin D1/Cyclin E1/pRb/E2F1 pathway to cause cell cycle arrest at G0/G1 phase. These findings provided new insight into the correlation between miR-16-5p, cell cycle arrest, and radiosensitivity in CaP, revealed a previously unrecognized function of miR-16-5p–Cyclin D1/E1–pRb–E2F1 regulation in response to IR and may offer an alternative therapy to improve the efficiency of conventional radiotherapy.  相似文献   

10.
11.
Liu JL  Jiang L  Lin QX  Deng CY  Mai LP  Zhu JN  Li XH  Yu XY  Lin SG  Shan ZX 《Life sciences》2012,90(25-26):1020-1026
AimUpregulation of microRNA 16 (miR-16) contributed to the differentiation of human bone marrow mesenchymal stem cells (hMSCs) toward myogenic phenotypes in a cardiac niche, the present study aimed to determine the role of miR-16 in this process.Main methodshMSCs and neonatal rat ventricular myocytes were co-cultured indirectly in two chambers to set up a cardiac microenvironment (niche). miRNA expression profile in cardiac-niche‐induced hMSCs was detected by miRNA microarray. Cardiac marker expression and cell cycle analysis were determined in different treatment hMSCs. Quantitative real-time PCR and Western blot were used to identify the expression of mRNA, mature miRNA and protein of interest.Key findingsmiRNA dysregulation was shown in hMSCs after cardiac niche induction. miR-16 was upregulated in cardiac-niche‐induced hMSCs. Overexpression of miR-16 significantly increased G1-phase arrest of the cell cycle in hMSCs and enhanced the expression of cardiac marker genes, including GATA4, NK2-5, MEF2C and TNNI3. Differentiation-inducing factor 3 (DIF-3), a G0/G1 cell cycle arrest compound, was used to induce G1 phase arrest in cardiac-niche‐induced hMSCs, and the expression of cardiac marker genes was up-regulated in DIF-3-treated hMSCs. The expression of CCND1, CCND2 and CDK6 was suppressed by miR-16 in hMSCs. CDK6, CCND1 or CCND2 knockdown resulted in G1 phase arrest in hMSCs and upregulation of cardiac marker gene expression in hMSCs in a cardiac niche.SignificancemiR-16 enhances G1 phase arrest in hMSCs, contributing to the differentiation of hMSCs toward myogenic phenotypes when in a cardiac niche. This mechanism provides a novel strategy for pre-modification of hMSCs before hMSC-based transplantation therapy for severe heart diseases.  相似文献   

12.
Reduced expression of microRNA-129 (miR-129) has been reported in several types of tumor cell lines as well as in primary tumor tissues. However, little is known about how miR-129 affects cell proliferation in gastric cancer. Here, we show that all miR-129 family members, miR-129-1-3p, miR-129-2-3p, and miR-129-5p, are down-regulated in gastric cancer cell lines compared with normal gastric epithelial cells. Furthermore, using the real-time cell analyzer assay to observe the growth effects of miR-129 on gastric cancer cells, we found that all three mature products of miR-129 showed tumor suppressor activities. To elucidate the molecular mechanisms underlying down-regulation of miR-129 in gastric cancer, we analyzed the effects of miR-129 mimics on the cell cycle. We found that increased miR-129 levels in gastric cancer cells resulted in significant G0/G1 phase arrest. Interestingly, we showed that cyclin dependent kinase 6 (CDK6), a cell cycle-associated protein involved in G1-S transition, was a target of miR-129. We also found that expression of the sex determining region Y-box 4 (SOX4) was inversely associated with that of miR-129-2-3p and miR-129-5p but not of miR-129-1-3p. Together, our data indicate that all miR-129 family members, not only miR-129-5p, as previously thought, play an important role in regulating cell proliferation in gastric cancer.  相似文献   

13.
Abnormal proliferation, apoptosis repression and differentiation blockage of hematopoietic stem/progenitor cells have been characterized to be the main reasons leading to acute myeloid leukemia (AML). Previous studies showed that miR-29a and miR-29b could function as tumor suppressors in leukemogenesis. However, a comprehensive investigation of the function and mechanism of miR-29 family in AML development and their potentiality in AML therapy still need to be elucidated. Herein, we reported that the family members, miR-29a, -29b and -29c, were commonly downregulated in peripheral blood mononuclear cells and bone marrow (BM) CD34+ cells derived from AML patients as compared with the healthy donors. Overexpression of each miR-29 member in THP1 and NB4 cells markedly inhibited cell proliferation and promoted cell apoptosis. AKT2 and CCND2 mRNAs were demonstrated to be targets of the miR-29 members, and the role of miR-29 family was attributed to the decrease of Akt2 and CCND2, two key signaling molecules. Significantly increased Akt2, CCND2 and c-Myc levels in the AML cases were detected, which were correlated with the decreased miR-29 expression in AML blasts. Furthermore, a feed-back loop comprising of c-Myc, miR-29 family and Akt2 were found in myeloid leukemogenesis. Reintroduction of each miR-29 member partially corrected abnormal cell proliferation and apoptosis repression and myeloid differentiation arrest in AML BM blasts. An intravenous injection of miR-29a, -29b and -29c in the AML model mice relieved leukemic symptoms significantly. Taken together, our finding revealed a pivotal role of miR-29 family in AML development and rescue of miR-29 family expression in AML patients could provide a new therapeutic strategy.  相似文献   

14.
Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) has a multidomain structure, which assures its pleiotropic activity. The physiological functions of this protein include repression of inflammatory processes and the prevention of immune disorders. The influence of MCPIP1 on the cell cycle of cancer cells has not been sufficiently elucidated. A previous study by our group reported that overexpression of MCPIP1 affects the cell viability, inhibits the activation of the phosphoinositide-3 kinase/mammalian target of rapamycin signalling pathway, and reduces the stability of the MYCN oncogene in neuroblastoma (NB) cells. Furthermore, a decrease in expression and phosphorylation levels of cyclin-dependent kinase (CDK) 1, which has a key role in the M phase of the cell cycle, was observed. On the basis of these previous results, the purpose of our present study was to elucidate the influence of MCPIP1 on the cell cycle of NB cells. It was confirmed that ectopic overexpression of MCPIP1 in two human NB cell lines, KELLY and BE(2)-C, inhibited cell proliferation. Furthermore, flow cytometric analyses and imaging of the cell cycle with a fluorescence ubiquitination cell-cycle indicator test, demonstrated that overexpression of MCPIP1 causes an accumulation of NB cells in the G1 phase of the cell cycle, while the possibility of an increase in G0 phase due to induction of quiescence or senescence was excluded. Additional assessment of the molecular machinery responsible for the transition between the cell-cycle phases confirmed that MCPIP1 overexpression reduced the expression of cyclins A2, B1, D1, D3, E1, and E2 and decreased the phosphorylation of CDK2 and CDK4, as well as retinoblastoma protein. In conclusion, the present results indicated a relevant impact of overexpression of MCPIP1 on the cell cycle, namely a block of the G1/S cell-cycle checkpoint, resulting in arrest of NB cells in the G1 phase.  相似文献   

15.
16.
Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest   总被引:2,自引:0,他引:2  
Sun F  Fu H  Liu Q  Tie Y  Zhu J  Xing R  Sun Z  Zheng X 《FEBS letters》2008,582(10):1564-1568
  相似文献   

17.
18.
19.
20.
CCAAT/enhancer-binding proteins (C/EBPs) are a highly conserved family of DNA-binding proteins that regulate cell-specific growth, differentiation, and apoptosis. Here, we show that induction of C/EBPdelta gene expression during G0 growth arrest is a general property of mammary-derived cell lines. C/EBPdelta is not induced during G0 growth arrest in 3T3 or IEC18 cells. C/EBPdelta induction is G0-specific in mouse mammary epithelial cells; C/EBPdelta gene expression is not induced by growth arrest in the G1, S, or G2 phase of the cell cycle. C/EBPdelta antisense-expressing cells (AS1 cells) maintain elevated cyclin D1 and phosphorylated retinoblastoma protein levels and exhibit delayed G0 growth arrest and apoptosis in response to serum and growth factor withdrawal. Conversely, C/EBPdelta-overexpressing cells exhibited a rapid decline in cyclin D1 and phosphorylated retinoblastoma protein levels, a rapid increase in the cyclin-dependent kinase inhibitor p27, and accelerated G0 growth arrest and apoptosis in response to serum and growth factor withdrawal. When C/EBPdelta levels were rescued in AS1 cells by transfection with a C/EBPdelta "sense" construct, normal G0 growth arrest and apoptosis were restored. These results demonstrate that C/EBPdelta plays a key role in the regulation of G0 growth arrest and apoptosis in mammary epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号