首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this work was to determine if annealing altered the susceptibility of different starches to enzyme hydrolysis. Five commercial starches, including waxy corn, common corn, Hylon V, Hylon VII, and potato, were annealed by a multiple-step process, and their susceptibility to α-amylase and glucoamylase and the physicochemical properties of the hydrolyzed native and annealed starches were determined. During 36 h of enzyme hydrolysis, significant differences were noted between annealed starch and its native counterpart in the extent of α-amylolysis for Hylon V, Hylon VII, and potato, and in the extent of glucoamylolysis for potato. Waxy and common corn starches were hydrolyzed to a greater degree by both enzymes when compared with the other starches. The apparent amylose content of both native and annealed starches decreased during α-amylolysis for all starches, but increased for Hylon V, VII, and potato starches during glucoamylolysis. Most native and annealed starches exhibited comparable or increased peak gelatinization temperatures and comparable or decreased gelatinization enthalpy on hydrolysis with the exception of annealed potato starch, which showed a significant decrease in peak gelatinization temperature on hydrolysis. Annealed starches displayed significant higher peak gelatinization temperatures than their native counterparts. The intensity of main X-ray diffraction peaks of all starches decreased upon hydrolysis, and the changes were more evident for glucoamylase-hydrolyzed starches. The annealing process allowed for a greater accessibility of both enzymes to the amorphous as well as the crystalline regions to effect significant changes in gelatinization properties during enzyme hydrolysis.  相似文献   

2.
Physico-chemical properties of starch from wheat, rye, barley (waxy, high-amylose and normal-amylose), waxy maize, pea and potato (normal-amylose and high-amylopectin) were studied. Emphasis was given to the amylose (total, apparent and lipid-complexed) and amylopectin characteristics as well as to the gelatinization and retrogradation properties measured using differential scanning calorimetry. The total amylose content varied from ca. 1 % for waxy maize to 37% for high-amylose barley. The amylopectin characteristics were determined by high-performance size-exclusion chromatography after debranching with isoamylase. The weight-average degree of polymerization ( w) was 26, 33 and 27 for the A-, B-, and C-type starches, respectively. In general, the potato starches exhibited the highest retrogradation enthalpies and the cereal starches the lowest, while the pea starch showed an intermediate retrogradation enthalpy. The data were analysed by principal component analysis (PCA). The w showed positive correlation to the melting interval, the peak minimum, the offset temperatures of the retrogradation-related endotherm as well as to the gelatinization and retrogradation enthalpies. However, the high-amylose barley retrograded to a greater extent than the other cereal starches, despite low w (24). The amylose content was negatively correlated to the onset and the peak minimum temperatures of gelatinization.  相似文献   

3.
The physico-chemical, morphological, thermal, pasting, textural, and retrogradation properties of the starches isolated from four traditional Taewa (Maori potato) cultivars (Karuparera, Tutaekuri, Huakaroro, Moemoe) of New Zealand were studied and compared with starch properties of a modern potato cultivar (Nadine). The relationships between the different starch characteristics were quantified using Pearson correlation and principal component analysis. Significant differences were observed among physico-chemical properties such as phosphorus content, amylose content, swelling power, solubility and light transmittance of starches from the different potato cultivars. The starch granule morphology (size and shape) for all the potato cultivars showed considerable variation when studied by scanning electron microscopy and particle size analysis. Starch granules from Nadine and Moemoe cultivars showed the presence of large and irregular or cuboid granules in fairly high number compared with the starches from the other cultivars. The transition temperatures (To; Tp; Tc) and the enthalpies (ΔHgel) associated with gelatinization suggested differences in the stability of the crystalline structures among these potato starches. The Moemoe starch showed the lowest To, while it was higher for Tutaekuri and Karuparera starches. Pasting properties such as peak, final and breakdown viscosity and texture profile analysis (TPA) parameters of starch gels such as hardness and fracturability were found to be higher for Nadine and Huakaroro starches. The Nadine and Huakaroro starch gels also had lower tendency towards retrogradation as evidenced by their lower syneresis (%) during storage at 4 °C. Principal component analysis showed that the Tutaekuri and Nadine cultivars differed to the greatest degree in terms of the properties of their starches.  相似文献   

4.
In the alkaliviscogram of starch of 26 nonwaxy rices grown in the tropics, gelatinization normality correlated positively with final gelatinization temperature (BEPT) of starch (r=0.969**) and negatively with alkali spreading value of milled rice (r= ?0.931**). Peak viscosity was not linearly related to amylose content. Among samples of rice starch having a high amylose (>28%) content, peak viscosity was correlated with the gel consistency of starch (r=?0.690**) and of milled rice (r=?0.644**) (n = 18). These high-amylose starches showed the widest variation in peak viscosity. Amylose content, and gel consistency were inherited from the same parent in all nine varieties and lines studied, whereas peak viscosity, gelatinization normality and the final BEPT were inherited from either parent. The starch of five waxy rices showed higher peak viscosities even at a concentration of 1.8% as compared with a 2.0% nonwaxy rice starch.  相似文献   

5.
Starch re-structured directly in potato tubers by antisense suppression of starch branching enzyme (SBE), granule bound starch synthase (GBSS) or glucan water dikinase (GWD) genes was studied with the aim at disclosing the effects on resulting physico-chemical and enzyme degradative properties. The starches were selected to provide a combined system with specific and extensive alterations in amylose and covalently esterified glucose-6-phosphate (G6P) contents. As an effect of the altered chemical composition of the starches their hydrothermal characteristics varied significantly. Despite of the extreme alterations in phosphate content, the amylose content had a major affect on swelling power, enthalpy for starch gelatinization and pasting parameters as assessed by Rapid Visco Analysis (RVA). However, a combined influence of the starch phosphate and long glucan chains as represented by high amylose or long amylopectin chain length was indicated by their positive correlation to the final viscosity and set back (RVA) demonstrating the formation of a highly hydrated and gel-forming system during re-structuring of the starch pastes. Clear inverse correlations between glucoamylase-catalyzed digestibility and amylopectin chain length and starch phosphate and lack of such correlation with amylose content indicates a combined structuring role of the phosphate groups and amylopectin chains on the starch glucan matrix.  相似文献   

6.
Pure starches were isolated from white and red sorghum cultivated in Tidikelt, a hyper arid region situated in south Algeria. Amylose content, X-ray pattern and rheological properties of starches were examined. The amylose content in white sorghum starch (27.1%) was slightly higher than that in red sorghum (24.8%). The swelling power and the solubility behavior of both starches were nearly similar below 65 °C. At higher temperatures, starch isolated from the white sorghum cultivar showed higher swelling power and lower solubility index than pigmented sorghum starch. The pasting properties of starches determined by RVA, Rapid Visco Analyser showed different viscosity peaks. Red sorghum starch had a higher value (4731 cP) than white sorghum starch (4093 cP). For both sorghum, X-ray diffractograms exhibit an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity were estimated at 22.72% and 28.91%, respectively, for local white and red sorghum starch. DSC analysis revealed that sorghum starches present higher temperatures at the peak (70.60 and 72.28 °C for white and red sorghum starches, respectively) and lower gelatinization enthalpies (9.087 and 8.270 J/g for white and red sorghum starches, respectively) than other cereal starches.The results showed that physicochemical and functional properties of sorghum cultivar starches were influenced by the genotype and the environment.  相似文献   

7.
Starch from tubers potato (Solanum tuberosum), taro (Alocassia indica), new cocoyam (Xanthosoma sagitifolium), true yam (Dioscorea alata), and root cassava, (Manihot esculenta) crops was isolated and its morphology, composition and physicochemical properties were investigated before and after heat–moisture treatment (HMT) (100 °C, for 10 h at a moisture content of 30%). Native starch granules were round to oval to polygonal with smooth surfaces. The granule size (diameter) ranged from 3.0 to 110 μm.The total amylose content ranged from 22.4 to 29.3%, of which 10.1–15.5% was complexed by native lipid. The phosphorus content ranged from 0.01 to 0.1%. The X-ray pattern of potato and true yam was of the ‘B’-type. Whereas, that of new cocoyam and taro was of the ‘A’-type. Cassava exhibited a mixed ‘A+B’-type X-ray pattern. The relative crystallinity, swelling factor (SF), amylose leaching (AML), gelatinization temperature range and the enthalpy of gelatinization of the native starches ranged from 30 to 46, 22 to 54, 5 to 23%, 13 to 19 °C and 12 to 18 J/g, respectively. Susceptibility of native starches towards hydrolysis by 2.2N HCl and porcine pancreatic -amylase were 60–86% (after 12 days), and 4–62% (after 72 h), respectively. Retrogradation was most pronounced in the B-type starches. Granule morphology remained unchanged after HMT. The X-ray pattern of the B-type starches was altered (B→A+B) on HMT. However, that of the other starches remained unchanged. HMT decreased SF, AML, gelatinization enthalpy and susceptibility towards acid hydrolysis, but increased gelatinization temperatures and enzyme susceptibility. Extent of retrogradation and relative crystallinity decreased on HMT of true yam and potato starches, but remained unchanged in the other starches. The foregoing data showed that changes in physicochemical properties on HMT are influenced by the interplay of crystallite disruption, starch chain associations and disruption of double helices in the amorphous regions.  相似文献   

8.
Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.  相似文献   

9.
The effect of nixtamalization process on thermal and rheological characteristics of corn starch was studied. Starch of raw sample had higher gelatinization temperature than its raw counterpart, because, the Ca(2+) ions stabilize starch structure of nixtamalized sample; however, the enthalpy values were not different in both samples. The temperature of the phase transition of the retrograded starches (raw and nixtamalized) were not different at the storage times assessed, but the enthalpy values of the above mentioned transition was different, indicating a lower reorganization of the starch structure in the nixtamalized sample. The viscoamylographic profile showed differences between both starches, since raw starch had higher peak viscosity than the nixtamalized sample due to partial gelatinization of some granules during this heat treatment. Rheological test showed that at low temperature (25 degrees C) the raw and nixtamalized starches presented different behaviour; however, the elastic characteristic was more important in the starch gel structure. The nixtamalization process produced changes in thermal and rheological characteristics becoming important in those products elaborated from nixtamalized maize.  相似文献   

10.
Five selected starches with a 60-fold span in their content of monoesterified starch phosphate were investigated with respect to distribution of glucose 6-phosphate and glucose 3-phosphate residues, amylopectin chain length distributions and gelatinisation properties. The distribution of starch phosphate in the starch granules was determined by preparation of N?geli dextrins followed by quantitative 31P-nuclear magnetic resonance spectroscopy. Total starch phosphate content was positively correlated to the unit chain lengths of the amylopectin as well as to the chain lengths of the corresponding N?geli dextrins. The major part (68-92%) of the total starch phosphate content was partitioned to the hydrolysed (amorphous) parts. Starch-bound glucose 6-phosphate per milligram of starch was 2-fold enriched in the amorphous parts, whereas phosphate groups bound at the 3-position were more evenly distributed. The gelatinisation temperatures of the native starches as determined by differential scanning calorimetry were positively correlated (R(2)=0.75) to starch phosphate content, while crystallinity (gelatinisation enthalpy) and crystal heterogeneity (endotherm peak width) showed no correlations to starch phosphate content. The relations between starch molecular structure, architecture and functional properties are discussed.  相似文献   

11.
Banana, maize, potato and sagu starches were boiled in the presence or absence of plasticizer (glycerol), producing edible films. In vitro digestibility features, amylose content and amylopectin gel filtration behavior of films and parent starches were evaluated. Available starch contents were lower in glycerol-containing films, due to dilution by the plasticizer. Total resistant starch increased in the maize starch-based film but decreased markedly in those prepared from the other starches. Amylose content of banana starch (40%) was about double those of the other starches. Nonetheless, all starch films exhibited similar retrograded resistant starch content. Although film production led to increased -amylolysis rates, these were further augmented by additional film heating, thereby indicating that film-manufacture did not promote complete starch gelatinization. Gel filtration chromatography suggested amylopectin depolymerization after film-making, which may also increase digestion kinetics. The presence of glycerol in the films slowed down starch digestion, a feature of potential dietetic use.  相似文献   

12.
This study was carried out in order to compare and establish the changes in physicochemical properties of starch from four different cultivars of yam at various stages of maturity during growth. The results showed that the starch content of the four yam tubers increased as growth progressed and were in the range of 70.5–85.3% on a dry basis. The shapes of the starch granules were round to oval or angular in the four yams and the size of starch granule increased with growth time ranging from 10 to 40 μm. The X-ray diffraction patterns could be classified as typical of B-type starch for the four cultivars of yam starch. The transition temperature of gelatinization of the four yam starches decreased during maturity. The RVA parameters suggested that yam starch paste showed a lower breakdown at an early harvest time. It appeared to be thermo-stable during heating but had a high setback after cooling, which might result in a tendency towards high retrogradation. The results for pasting behaviors showed that higher amylose content was associated with a lower pasting temperature and a higher peak viscosity in these starches.  相似文献   

13.
The effect of sodium chloride on the gelatinization and rheological properties of wheat and potato starches has been studied using differential scanning calorimetry, dynamic mechanical thermal analysis, and electron spin resonance techniques. All samples contained 60% water (w/w wet starch basis) and the salt content ranged from 0 to 16% (g/100 g starch-water). The presence of salt affected the onset (T(o)), peak (T(p)), and end (T(e)) temperatures of gelatinization, gelatinization enthalpy (DeltaH), storage modulus (G'), and rotational mobility coefficient (D(rot)), and the effect differed by salt concentration. 1H-NMR was used in parallel in order to elucidate how salts affect the properties of water in starch suspensions and in aqueous salt solutions according to their position on the Hofmeister series classification. The obtained results suggest that the mechanism of starch gelatinization in salt solutions can be attributed to the effect of solute on water properties and direct polymer-solute interactions. These two effects conflict with one another and result in complex effect patterns depending on the concentration of the salts.  相似文献   

14.
The aim of the present work was to investigate the effect of physical structures on the properties of starch granules. Starches with a high amylopectin content possessing A- and B-type crystallinity were chosen for the study. The gelatinization temperature decreased in the following order: maize (A) > potato (B) > wheat (A) > barley (A), which did not reflect a correlation with the type of crystallinity. Low values of gelatinization temperature were accompanied with high free surface energy of the crystallites. It is proposed that these data are caused by different types of imperfections in starch crystals. Annealing resulted in an enhancement of the gelatinization temperature and a decrease of the free surface energy of the crystallites for all starches reflecting a partial improvement of crystalline perfection. A limited acid hydrolysis (lintnerization) of the starches decreased the gelatinization temperature because of a partial disruption of the crystalline lamellae and an increase of the amount of defects on the edges of the crystallites. Annealing of the lintnerized starches improved the structure of maize and potato starch, giving them similar structural and physicochemical parameters, which was opposite the behavior of the annealed sample from wheat. The possible nature of removable and nonremovable defects inside the crystalline region of the starch granules is discussed. It is concluded that, besides the allomorphic A- and B-types of crystal packing, physical defects in the crystals possess a major impact on starch gelatinization.  相似文献   

15.
Ways to simulate the making of clear noodles from mung bran starch were investigated by studying the molecular structures of mung bean and tapioca starches. Scanning electron micrographs showed that tapioca starch granules were smaller than those of mung bean starch. X-ray diffraction patterns of mung bean and tapioca starch were A- and CA-patterns, respectively. Iodine affinity studies indicated that mung bean starch contained 37% of apparent amylose and tapioca starch contained 24%. Gel permeation chromatograms showed that mung bean amylopectin had longer peak chain-length of long-branch chains (DP 40) than that of tapioca starch (DP 35) but shorter peak chain-length of short-branch chains (DP 16) than that of tapioca starch (DP 21). P-31 n.m.r. spectroscopy showed that both starches contained phosphate monoesters, but only mung bean starch contained phospholipids. Physical properties, including pasting viscosity, gel strength, and thermal properties (gelatinization), were determined. The results of the molecular structure study and physical properties were used to develop acceptable products using mixtures of cross-linked tapioca and high-amylose maize starches. Tapioca starch was cross-linked by sodium trimetaphosphate (STMP) with various reaction times, pH values, and temperatures. The correlation between those parameters and the pasting viscosity were studied using a visco/amylograph. Starches, cross-linked with 0.1% STMP, pH 11.0, 3.5 h reaction time at 25, 35, and 45°C (reaction temperature), were used for making noodles. High-amylose maize starch (70% amylose) was mixed at varying ratios (9, 13, 17, 28, 37, and 44%) with the cross-linked tapioca starches. Analysis of the noodles included: tensile strength, water absorption, and soluble loss. Noodle sensory properties were evaluated using trained panelists. Noodles made from a mixture of cross-linked tapioca starch and 17% of a high-amylose starch were comparable to the clear noodles made from mung bean starch.  相似文献   

16.
The molecular structure and physicochemical properties of acid–alcohol treated maize and potato starches (0.36% HCl in methanol at 25 °C for 1–15 days) were investigated. The yields of the modified starches were ranging from 91 to 100%. The average granule size of modified starches decreased slightly. The solubility of starches increased with the increase of treatment time, and the pasting properties confirmed the high solubility of modified starches. The gelatinization temperatures and range of gelatinization increased with the increase of treatment time except To (onset temperature) of maize starch. Molecular structures of modified starches suggested the degradation of starches occurred mostly within the first 5 days of treatment, and degradation rate of potato starch was higher than maize starch both in amylopectin and in amylose. Maize starch was found less susceptible to acid–alcohol degradation than potato starch.  相似文献   

17.
Mutant genes at two loci, r and rb, known to encode genes affectingthe starch biosynthetic pathway, were studied for their effecton the structure and gelatinization of pea seed starches. Comparisonswere made using starches from four lines {RRRbRb, rrRbRb, RRrbrb,and rrrbrb), near-isogenic except for genes at these two loci.All the starches had C-type X-ray diffraction patterns, butdifferent contents of ‘A’ and ‘B’ polymorphs.The presence of a mutation at either locus increased the ‘B’polymorph content in the starches, although the influence ofthe r mutation was much greater than that of rb. Differenceswere discovered in the crystalline stucture of the rrRbRb starchwhich correlated with a high content of amorphous phase as wellas with the changes in amylopectin structure. In addition, changesin the crystalline structure of this sample correlated witha lack of co-operative transition during starch gelatinizationin excess water. The RRrbrb starch had a greatly increased enthalpyof gelatinization in excess water compared with the wild-typestarch. It is proposed that this effect is connected with specificcharge interactions between the molecules in the starch granule.The rrrbrb starch had parameters of crystalline structure andgelatinization which reflected the different influences of thetwo genes. With regard to gelatinization, this starch had relativelywide co-operative transition and low enthalpy and a very highpeak temperature of transition. Key words: Pisum sativum, starch structure, genetic effects, rugosus mutants  相似文献   

18.
Cu(2+) was introduced as an EPR probe into the starch granules isolated from different starch crop genotypes including transgenically modified potatoes generated for extreme amylose and starch phosphate monoester concentrations. Several discrete copper adducts bound to the starch matrix with different strength was revealed. It was found that phosphate has a significant influence on the type of these species, their number, location in the structure, and strength of binding. Well dispersed Cu(2+) complexes with axial symmetry are formed in the semicrystalline part of the starch linked through O-P- bonds in the phosphorylated starches. In the amorphous part of the starch, freely rotating hexaaqua complexes of Cu(2+) and complexes coupled antiferromagnetically are formed. The amount of the former increases with content of phosphate indicating enhanced binding of water in the granules. The results complement previous experimental data and molecular models for the starch granule with respect to the location and effects of phosphate and crystalline matter.  相似文献   

19.
Native new cocoyam starch (nNCS) was subjected to annealing (aNCS) and heat moisture treatment at 18% moisture level (h18NCS), 21% moisture level (h21NCS), 24% moisture level (h24NCS) and 27% moisture level (h27NCS) as hydrothermal treatments. Scanning electron and light microscopy revealed round and polygonal shapes with sizes ranging from 15 to 40 μm for native and modified starches. nNCS showed “A” pattern X-ray diffraction and no significant differences were observed in the X-ray pattern of the modified starches. Swelling power and solubility reduced following heat moisture treatment. At all pH studied (2–12), unmodified new cocoyam starch exhibited higher swelling capacity and solubility than the modified derivatives. Hydrothermal modifications improved water absorption capacity but reduced oil absorption capacity. Pasting temperature of native starch shifted to higher values following annealing and heat moisture treatment. Hot paste viscosity (Hv), viscosity after 30 min holding at 95 °C (Hv30) and cold paste viscosity (Cv) reduced after annealing and heat moisture treatment. The result also indicates that hydrothermal treatments reduced the tendency for setback. As the number of days of storage of starch paste increased from 1 to 10, light transmittance of all the starches reduced but marked reduction of light transmittance was observed in native starch. DSC studies revealed increase in gelatinization temperature following annealing and heat moisture treatment. Starch hydrothermal modifications reduced retrogradation as enthalpies of regelatinization reduced following modifications. The regelatinization peak in the second day scanning shifted to lower temperature than the gelatinization peak in first run heating DSC curve for all samples. The regelatinization peak also became larger and shifted to higher temperature range when the storage days increased from 2 to 7.  相似文献   

20.
Starch is the most important energy resource in human diet, and starch is used extensively as a food ingredient to manipulate the quality of our food. In both applications, starch functionality is intimately related to its hydration level. This paper aims at elucidating the starch granule hydration by investigating genotype-specific differences for native wheat, maize, and potato starches by 1H high-resolution (HR) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The preparations as analyzed in D2O suspensions at room temperature provided NMR spectra with large differences in signal-to-noise (S/N) ratio ranging over several orders of magnitude. It was possible to assign a wide range of components including anomeric α-1,4 and α-1,6-protons from reducing and non-reducing ends, respectively. We utilized the effect that only mobile protons (e.g, dissolved or partially hydrated) are observed using 1H HR-MAS spectroscopy, whereas immobile protons (e.g., in water-inaccessible regions) of the starch granule are not observed due to strong homonuclear interactions to verify the hypothesis that the variations in signal intensities between the different starches are caused by genotype-specific variations in assembly of the starch granules and that the signal intensity, thus, indicates the extent of accessible granule hydration surfaces. Moreover, events taking place during thermal starch granule hydration (gelatinization) were investigated for ten representative starches. NMR spectra of suspended samples were acquired at 30, 45 and 70 °C and again after cooling at 30 °C. A substantial increase in NMR signal intensity occurs above the gelatinization temperature due to extensive proton mobilization in the starch granule assembly. The relative integrated spectral intensities at 30 °C before and after gelatinization at 70 °C showed differences in gain factors between 4 and 193. Also, 31P MAS NMR spectra displayed a similar significant intensity gain upon gelatinization. The results showed that the phosphate groups in the starch granule are mobilized concomitantly with the protons and thus deeply “buried” in the immobile (water inaccessible) domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号