首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodissociated cytochrome c oxidase: cryotrapped metastable intermediates   总被引:2,自引:0,他引:2  
By freezing CO-bound cytochrome c oxidase at cryogenic temperatures, we have been able to cryotrap metastable intermediates of photodissociation. The differences in the resonance Raman spectrum between these intermediates and ligand-free reduced cytochrome oxidase at cryogenic temperatures are the same as those between the phototransient and the fully reduced preparation detected with 10-ns excitation at room temperature. The largest difference occurs in the iron-histidine stretching mode of cytochrome a3, which shifts by up to 8 cm-1 to higher frequency in the photoproduct. At 4 K the iron-histidine mode displays two unrelaxed frequencies in the photoproduct, which we attribute to two different unrelaxed structures of the heme pocket. The frequencies and intensities of the lines in the resonance Raman spectrum are sensitive to the incident laser power density in both the ligand-free fully reduced preparation and the photoproduct even at 4 K. At 77 K the carbonyl stretching mode of the formyl group in cytochrome a32+ is especially sensitive to laser power, displaying two frequencies-1666 cm-1 at low-flux density and 1674 cm-1 at high-flux density. These frequencies may reflect a change in conformation of the formyl group or a change in its interaction with the protein such as in hydrogen bonding to the carbonyl of the formyl group. The absence of immediate relaxation of the CO photoproduct must be considered when one studies the structure and kinetics of the O2 intermediates that are formed in triple trapping and flow-flash experiments following photodissociation of the CO-bound enzyme.  相似文献   

2.
Quaternary-transformation-induced changes at the heme in deoxyhemoglobins   总被引:4,自引:0,他引:4  
Quaternary-structure-induced differences in both the high- and low-frequency regions of the resonance Raman spectrum of the heme have been detected in a variety of hemoglobins. These differences may be the result of (1) changes in the amino acid sequence, induced by genetic and chemical modifications, and (2) alterations in the quaternary structure. For samples in solution in low ionic strength buffers, differences in the 1357-cm-1 line (an electron-density-sensitive vibrational mode) correlate with differences in the 216-cm-1 line (the iron-histidine stretching mode). Thus, changes in the iron-histidine bond and changes in the pi-electron density of the porphyrin depend upon a common heme-globin interaction. The quaternary-structure-induced changes in the vibrational modes associated with the heme demonstrate that there is extensive communication between the heme and the globin and impact on models for the energetics of cooperativity. The local interactions of the iron-histidine mode are energetically small and destabilize the deoxy heme in the T structure with respect to the R structure. Therefore, these interactions must be larger in the ligated protein than in the deoxy protein to obtain a negative free energy of cooperativity. Additionally, our data imply that the deprotonation of the proximal histidine does not play a major role in the energetics of cooperativity. On the other hand, models for cooperativity that require conformational changes in the iron-histidine bond or direct interaction between the porphyrin and the protein are qualitatively consistent with the observed variation of heme electronic structure in concert with protein quaternary structure.  相似文献   

3.
Resonance Raman scattering studies are reported on freshly prepared and aged ferric, ligand-free ferrous, and CO-bound ferrous cytochrome c peroxidase. The ferric form of the fresh enzyme has a heme which is penta-coordinate high spin, independent of buffer over the pH range 4.3-7, as determined by well established Raman marker lines. The aged enzyme displays a mixture of spin and coordination states, but it can be stabilized in the penta-coordinate high spin form in the presence of phosphate. These results can be accounted for by considering the size of the channel (6 A wide, 11 A long) between the distal side of the heme and the outer surface of the protein. A phosphate ion may be accommodated in this channel resulting in the stabilization of the distal heme pocket. The ferrous cytochrome c peroxidase in both the ligand-free and CO-bound states has an acidic and an alkaline form. The acidic form has the characteristic spectral features of peroxidases: a high frequency iron-histidine stretching mode (248 cm-1), a high frequency Fe-CO stretching mode (537 cm-1), and a low frequency C-O stretching mode (1922 cm-1). At alkaline pH these frequencies become similar to those of hemoglobin and myoglobin, with the corresponding modes located at 227, 510, and 1948 cm-1, respectively. We attribute the acid/alkaline transition in the ferrous forms of cytochrome c peroxidase to a rearrangement mainly of the proximal side of the heme, culminating in a change of steric interactions between the proximal histidine and the heme or of the hydrogen bonding network involving the proximal histidine. The new data presented here reconcile many inconsistencies reported in the past.  相似文献   

4.
We have measured the Soret band of the photoproduct obtained by complete photolysis of sperm whale carbonmonoxymyoglobin at 10 K. The experimental spectrum has been modeled with an analytical expression that takes into account the homogeneous bandwidth, the coupling of the electronic transition with both high and low frequency vibrational modes, and the effects of static conformational heterogeneity. The comparison with deoxymyoglobin at low temperature reveals three main differences. In the photoproduct, the Soret band is shifted to red. The band is less asymmetric, and an enhanced coupling to the heme vibrational mode at 674 cm−1 is observed. These differences reflect incomplete relaxation of the active site after ligand dissociation. The smaller band asymmetry of the photoproduct can be explained by a smaller displacement of the iron atom from the mean porphyrin plane, in quantitative agreement with the X-ray structure analysis. The enhanced vibrational coupling is attributed to a subtle heme distortion from the planar geometry that is barely detectable in the X-ray structure.  相似文献   

5.
Magnetic circular dichroism spectra (MCD) of reduced cytochromes P450 and P420 from rabbit liver microsomes have been recorded and analyzed for the 350-600 nm spectral region in the temperature interval from 2 to 290 K. The shape, intensity and temperature dependence of the MCD of reduced P450 in the Soret region are quite different from that of other high-spin ferrous hemoproteins, whose heme iron is coordinated to the imidazole of histidine (deoxymyoglobin, deoxyhemoglobin, reduced peroxidase and cytochrome c oxidase). Assuming that in the reduced P450 as well as in its CO-complex the protein-derived ligand is mercaptide (RS-) the differences can be explained by the existence of two electronic transitions in the Soret region: the common for hemoproteins pi----pi porphyrin transition and sulfur to porphyrin charge-transfer transition, p+(Sp)----eg (pi). The unusual spectral characteristics of the CO-complex of P450 have been ascribed earlier to strong configurational interaction of these two transitions. From the similarities of the Soret MCD and their temperature dependences for the reduced P420 and for other high-spin ferrous hemoproteins one can conclude that heme iron of the reduced P420 is high-spin and is coordinated to the imidazole of histidine. The zero-field splitting parameter D of the spin Hamiltonian has been estimated from the MCD temperature dependences. The obtained splitting of approximately 30 cm-1 for P450 and of approximately 10 cm-1 for P420 exceeds that for myoglobin and hemoglobin (approximately 5 cm-1).  相似文献   

6.
The hemoglobin of the marine annelid Glycera dibranchiata possesses several unique features: the hemoglobin consists of multiple monomeric and polymeric components, quaternary structure is lacking, the distal histidine is replaced by leucine in at least one monomeric constituent, and 4) the protein exhibits extremely rapid ligand binding kinetics. The effect of these structural modifications on the ligand binding process has been evaluated using resonance Raman spectroscopy to examine the vibrational modes of the porphyrin macrocycle in deoxy and carbonmonoxy equilibrium species of hemoglobin G. dibranchiata in both the unseparated monomeric and polymeric forms and in a single monomeric component designated Fraction II. Significant differences relative to hemoglobin were found in porphyrin pi electron density, vinyl environment, low frequency vibrational modes, and, in particular, the Fe-proximal histidine stretching mode. Spectra of the deoxy heme transients generated within 10 ns of ligand photolysis have also been examined. These clearly indicate large differences in the heme pocket dynamics subsequent to CO photolysis in G. dibranchiata hemoglobins relative to other hemoglobins. The significance of these results in terms of the kinetics and thermodynamics of ligand binding is discussed.  相似文献   

7.
Resonance Raman spectroscopy has been used to observe changes in the iron-ligand stretching frequency in photoproduct spectra of the proximal cavity mutant of myoglobin H93G. The measurements compare the deoxy ferrous state of the heme iron in H93G(L), where L is an exogenous imidazole ligand bound in the proximal cavity, to the photolyzed intermediate of H93G(L)*CO at 8 ns. There are significant differences in the frequencies of the iron-ligand axial out-of-plane mode nu(Fe-L) in the photoproduct spectra depending on the nature of L for a series of methyl-substituted imidazoles. Further comparison was made with the proximal cavity mutant of myoglobin in the absence of exogenous ligand (H93G) and the photoproduct of the carbonmonoxy adduct of H93G (H93G-*CO). For this case, it has been shown that H2O is the axial (fifth) ligand to the heme iron in the deoxy form of H93G. The photoproduct of H93G-*CO is consistent with a transiently bound ligand proposed to be a histidine. The data presented here further substantiate the conclusion that a conformationally driven ligand switch exists in photolyzed H93G-*CO. The results suggest that ligand conformational changes in response to dynamic motions of the globin on the nanosecond and longer time scales are a general feature of the H93G proximal cavity mutant.  相似文献   

8.
We have measured the VFe-His Raman band of horse heart deoxymyoglobin dissolved in an aqueous solution as a function of temperature between 10 and 300 K. The minimal model to which these data can be fitted in a statistically significant and physically meaningful way comprises four different Lorentzian bands with frequencies at 197, 209, 218, and 226 cm-1, and a Gaussian band at 240 cm-1, which exhibit halfwidths between 10 and 12.5 cm-1. All these parameters were assumed to be independent of temperature. The temperature dependence of the apparent total band shape's frequency is attributed to an intensity redistribution of the subbands at omega 1 = 209 cm-1, omega 2 = 218 cm-1, and omega 3 = 226 cm-1, which are assigned to Fe-N epsilon (HisF8) stretching modes in different conformational substrates of the Fe-HisF8 linkage. They comprise different out-of-plane displacements of the heme iron. The two remaining bands at 197 and 240 cm-1 result from porphyrin modes. Their intensity ratio is nearly temperature independent. The intensity ratio I3/I2 of the vFe-His subbands exhibits a van't Hoff behavior between 150 and 300 K, bending over in a region between 150 and 80 K, and remains constant between 80 and 10 K, whereas I2/I1 shows a maximum at 170 K and approaches a constant value at 80 K. These data can be fitted by a modified van't Hoff expression, which accounts for the freezing into a non-equilibrium distribution of substates below a distinct temperature Tf and also for the linear temperature dependence of the specific heat of proteins. The latter leads to a temperature dependence of the entropic and enthalpic differences between conformational substates. The fits to the intensity ratios of the vFe-His subbands yield a freezing temperature of Tf = 117 K and a transition region of delta T = 55 K. In comparison we have utilized the above thermodynamic model to reanalyze earlier data on the temperature dependence of the ratio Ao/A1 of two subbands underlying the infrared absorption band of the CO stretching vibration in CO-ligated myoglobin (A. Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M. K. Kong, I. E. T. Iben, J. Johnson, P. Ormos, T. B. Sauke, R. Scholl, A. Schulte, P. J. Steinbach, R. D. Vittitow, and R. D. Young, 1987, Biophys. Chem. 26:237-335).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The influence of high pressure on the heme protein conformation of myoglobin in different ligation states is studied using Raman spectroscopy over the temperature range from 30 to 295 K. Photostationary experiments monitoring the oxidation state marker bands demonstrate the change of rebinding rate with pressure. While frequency changes of vibrational modes associated with rigid bonds of the porphyrin ring are <1 cm(-1), we investigate a significant shift of the iron-histidine mode to higher frequency with increasing pressure (approximately 3 cm(-1) for deltaP = 190 MPa in Mb). The observed frequency shift is interpreted structurally as a conformational change affecting the tilt angle between the heme plane and the proximal histidine and the out-of-plane iron position. Independent evidence for iron motion comes from measurements of the redshift of band III in the near-infrared with pressure. This suggests that at high pressure the proximal heme pocket and the protein are altered toward the bound state conformation, which contributes to the rate increase for CO binding. Raman spectra of Mb and photodissociated MbCO measured at low temperature and variable pressure further support changes in protein conformation and are consistent with glasslike properties of myoglobin below 160 K.  相似文献   

10.
S Dasgupta  T G Spiro 《Biochemistry》1986,25(20):5941-5948
Resonance Raman spectra are reported for deoxyhemoglobin (deoxyHb) and the (carbonmonoxy)hemoglobin (HbCO) photoproduct Hb by use of 7-ns YAG laser pulses at wavelengths of 416 and 532 nm, where enhancement is observed for totally symmetric and nontotally symmetric modes, respectively. The frequencies of the porphyrin skeletal modes v10, v2, v19, v11, and v3 have been determined to be 1602, 1559, 1553, 1542, and 1466 cm-1 in Hb. These frequencies are 2-3 cm-1 lower than the corresponding frequencies for deoxyHb. The v19 and v11 frequencies are at the expected values for a Ct-N distance of 2.057 A, the known core size for a 6-coordinate high-spin FeII-porphyrin complex. The remaining frequencies, however, deviate from the core size correlations for these modes in the same direction as do those of deoxyHb, suggesting that the porphyrin ring is domed in both species. Thus, the heme structure is similar for deoxyHb and Hb but is slightly expanded in the latter. The expanded heme in Hb implies a restraint on the full out-of-plane displacement of the Fe atom, by an estimated approximately 0.1 A relative to deoxyHb. This could result from a residual interaction with the CO molecule if the latter remains held by the protein against the Fe atom, in a high-spin 6-coordinate complex. The available spectroscopic evidence suggests that such a complex may be stabilized at 4 K but is unlikely to persist at room temperature beyond the electronic relaxation (0.35 ps) of the electronically excited heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Molecular dynamics simulations, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy have been performed on a mutant of the Scapharca inaequivalvis homodimeric hemoglobin, where residue threonine 72, at the subunit interface, has been substituted by isoleucine. Molecular dynamics simulation indicates that in the Thr-72-->Ile mutant several residues that have been shown to play a role in ligand binding fluctuate around orientations and distances similar to those observed in the x-ray structure of the CO derivative of the native hemoglobin, although the overall structure remains in the T state. Visible absorption spectroscopy data indicate that in the deoxy form the Soret band is less asymmetric in the mutant than in the native protein, suggesting a more planar heme structure; moreover, these data suggest a similar heme-solvent interaction in both the liganded and unliganded states of the mutant protein, at variance with that observed in the native protein. The "conformation sensitive" band III of the deoxy mutant protein is shifted to lower energy by >100 cm-1 with respect to the native one, about one-half of that observed in the low temperature photoproducts of both proteins, indicating a less polar or more hydrophobic heme environment. Resonance Raman spectroscopy data show a slight shift of the iron-proximal histidine stretching mode of the deoxy mutant toward lower frequency with respect to the native protein, which can be interpreted in terms of either a change in packing of the phenyl ring of Phe-97, as also observed from the simulation, or a loss of water in the heme pocket. In line with this latter interpretation, the number of water molecules that dynamically enters the intersubunit interface, as calculated by the molecular dynamics simulation, is lower in the mutant than in the native protein. The 10-ns photoproduct for the carbonmonoxy mutant derivative has a higher iron-proximal histidine stretching frequency than does the native protein. This suggests a subnanosecond relaxation that is slowed in the mutant, consistent with a stabilization of the R structure. Taken together, the molecular dynamics and the spectroscopic data indicate that the higher oxygen affinity displayed by the Thr-72-->Ile mutant is mainly due to a local perturbation in the dimer interface that propagates to the heme region, perturbing the polarity of the heme environment and propionate interactions. These changes are consistent with a destabilization of the T state and a stabilization of the R state in the mutant relative to the native protein.  相似文献   

12.
An actively and passively mode-locked Nd:YAG laser, producing 30-ps pulses of 1-mJ energy at 532 nm, has been used to photolyze (carbonmonoxy)myoglobin (MbCO) and generate its resonance Raman spectrum, which was recorded with a vidicon multichannel analyzer. The photoproduct spectrum was obtained by subtraction of the MbCO spectrum, obtained at lower incident power levels. Comparison with the spectrum of deoxyMb, obtained with the same apparatus, revealed frequency downshifts of approximately 4 cm-1, for bands at 1604, 1554, and 1542 cm-1, which are identified with porphyrin skeletal modes v10, v19, and v11. These frequencies are known to correlate inversely with the core size of the porphyrin ring, and the shifts imply a larger core size for the photoproduct than for deoxyMb. Similar shifts have been observed for the (carbonmonoxy)hemoglobin (HbCO) photoproduct; in that case, the shifts persist for longer than 20 ns, whereas they are absent in the MbCO photoproduct spectrum within 7 ns of photolysis. The unrelaxed state of the heme group region is therefore suggested to be maintained by protein forces, which relax more rapidly for Mb than Hb. This may reflect a tighter coupling in Hb of the out-of-plane movement of the Fe atom with the proximal histidine-containing F helix.  相似文献   

13.
Resonance Raman spectra of the reduced form of cytochrome c oxidase isolated from bovine heart and the thermophilic bacterium PS3 were investigated in relation to their H+-pumping- and cytochrome-c-oxidizing activities, which were varied by incubating the enzyme at raised temperatures or at alkaline pH at room temperature. For both the bovine and PS3 enzymes, the intensity of the iron-histidine stretching Raman line of the ferrous a3 heme (214 cm-1) exhibited an incubation-temperature-dependent change, which fell between the similar curves of the H+-pumping and cytochrome-c-oxidizing activities. The intensities of the formyl CH=O stretching Raman line of the ferrous a3 heme (1665 cm-1) as well as of other lines were insensitive to the heat treatment. The iron-histidine stretching Raman line of both enzymes showed pH-dependent intensity change which was nearly parallel with the pH dependence of cytochrome-c-oxidizing activity. Therefore, deprotonation affecting the 214 cm-1 Raman line is responsible for the decrease of activity. This limited alkaline treatment to the PS3 enzyme was reversible and the recovered enzyme exhibited Raman intensities and enzymic activities similar to the native one. However, the neutralized, bovine enzyme with a similar intensity of the 214 cm-1 line showed increased cytochrome-c-oxidizing activity and null H+-pumping activity.  相似文献   

14.
We have determined eight X-ray structures of myoglobin mutant L29W at various experimental conditions. In addition, infrared spectroscopic experiments are presented, which are discussed in the light of the X-ray structures. Two distinct conformations of the CO-ligated protein were identified, giving rise to two stretching bands of heme-bound CO. If L29W MbCO crystals are illuminated around 180 K, a deoxy species is formed. The CO molecules migrate to the proximal side of the heme and remain trapped in the so-called Xe1 cavity upon temperature decrease to 105 K. The structure of this photoproduct is almost identical to the equilibrium high-temperature deoxy Mb structure. If the temperature is cycled to increasingly higher values, CO recombination is observed. Three intermediate structures have been determined during the rebinding process. Efficient recombination occurs only above 180 K, the characteristic temperature for the onset of protein dynamics. Rebinding is remarkably slow because bulky residues His64 and Trp29 block important migration pathways of the CO molecule.  相似文献   

15.
Histidine-rich glycoprotein (HRG) binds both hemes and metal ions simultaneously with evidence for interaction between the two. This study uses resonance Raman and optical absorption spectroscopies to examine the heme environment of the 1:1 iron-mesoporphyrin.HRG complex in its oxidized, reduced and CO-bound forms in the absence and presence of copper. Significant perturbation of Fe(3+)-mesoporphyrin.HRG is induced by Cu2+ binding to the protein. Specifically, high frequency heme resonance Raman bands indicative of low-spin, six-coordinate iron before Cu2+ binding exhibit monotonic intensity shifts to bands representing high-spin, five-coordinate iron. The latter coordination is in contrast to that found in hemoglobin and myoglobin, and explains the Cu(2+)-induced decrease and broadening of the Fe(3+)-mesoporphyrin.HRG Soret band concomitant with the increase in the high-spin marker band at 620 nm. After dithionite reduction, the Fe(2+)-mesoporphyrin.HRG complex displays high frequency resonance Raman bands characteristic of low-spin heme and no iron-histidine stretch, which together suggest six-coordinate iron. Furthermore, the local heme environment of the complex is not altered by the binding of Cu1+. CO-bound Fe(2+)-mesoporphyrin.HRG exhibits bands in the high and low frequency regions similar to those of other CO-bound heme proteins except that the iron-CO stretch at 505 cm-1 is unusually broad with delta nu approximately 30 cm-1. The dynamics of CO photolysis and rebinding to Fe(2+)-mesoporphyrin.HRG are also distinctive. The net quantum yield for photolysis at 10 ns is low relative to most heme proteins, which may be attributed to very rapid geminate recombination. A similar low net quantum yield and broad iron-CO stretch have so far only been observed in a dimeric cytochrome c' from Chromatium vinosum. Furthermore, the photolytic transient of Fe(2+)-mesoporphyrin.HRG lacks bands corresponding to high-spin, five-coordinate iron as is found in hemoglobin and myoglobin under similar experimental conditions, suggesting iron hexacoordination before CO recombination. These data are consistent with a closely packed distal heme pocket that hinders ligand diffusion into the surrounding solvent.  相似文献   

16.
We have directly observed the oxyferryl group of ferryl myoglobin by resonance Raman spectroscopy. The FeIV = O stretching vibration is observed at 797 cm-1 and confirmed by an 18O-induced isotopic shift to 771 cm-1. The porphyrin center-to-nitrogen distance of ferryl myoglobin is significantly less than that previously observed for horseradish peroxidase compound II, which also contains an FeIV = O heme. The FeIII-CN- stretch of myoglobin (FeIII) cyanide is observed at 454 cm-1, which shifts to 449 cm-1 upon substitution with [13C]cyanide.  相似文献   

17.
Resonance Raman (RR) spectra of the acidic form of FeIII horseradish peroxidase (HRP) were obtained at room and low temperatures using B- and Q-band excitation. At 296 K, HRP exhibits two sets of porphyrin skeletal stretching frequencies which are attributed to a thermal mixture of 5- and 6-coordinate high-spin FeIII states. When the temperature is lowered, the observed bands shift to higher frequencies, and these are assigned to intermediate- and low-spin states. Addition of 40% glycerol has no effect on the spectra at 296 K, but at 20 K, all four frequency sets are observed corresponding to the two forms observed at room and low temperature in the absence of glycerol. The 296 K RR spectrum of the HRP-hydroquinone complex is similar to that of free HRP, but conversion to the intermediate- and low-spin states is complete at a higher temperature than in the free enzyme. Addition of benzohydroxamic acid (BHA) to HRP shifts the RR frequencies to those corresponding to a 6-coordinate high-spin species at both room and low temperature. Two upsilon (C = C) stretching modes are observed for HRP and its donor complexes, indicating that the vinyl groups are inequivalent. On BHA binding, one of the vinyl modes and upsilon 37 (Eu) are enhanced, suggesting symmetry lowering of the heme site.  相似文献   

18.
We report the optical absorption spectra of sperm whale deoxy-, oxy-, and carbonmonoxymyoglobin in the temperature range 300–20 K and in 65% glycerol or ethylene glycol–water mixtures. By lowering the temperature, all bands exhibit half-width narrowing and peak frequency shift; moreover, the near-ir bands of deoxymyoglobin show a marked increase of the integrated intensities. Opposed to what has already been reported for human hemoglobin, the temperature dependence of the first moment of the investigated bands does not follow the behavior predicted by the harmonic Franck–Condon approximation and is sizably affected by the solvent composition; this solvent effect is larger in liganded than in nonliganded myoglobin. However, for all the observed bands the behavior of the second moment can be quite well rationalized in terms of the harmonic Franck–Condon approximation and is not dependent on solvent composition. On the basis of these data we put forward some suggestions concerning the structural and dynamic properties of the heme pocket in myoglobin and their dependence upon solvent composition. We also discuss the different behaviors of myoglobin and hemoglobin in terms of the different heme pocket structures and deformabilities of the two proteins.  相似文献   

19.
Stavrov SS 《Biopolymers》2004,74(1-2):37-40
It is shown by using the vibronic approach that the iron displacement out of the porphyrin plane in deoxyheme proteins intermixes the porphyrin pi and axial iron-histidine sigma electronic subsystems. This intermixing explains the substantial coupling of the iron-histidine vibration to the heme Soret excitation, the appearance of the iron-histidine band in the corresponding resonance Raman spectra, and a number of other experimental data, including the dependence of the iron-histidine vibrational frequency on the extent of the iron displacement out of the porphyrin plane. This dependence implies that there is an anharmonic coupling between the corresponding vibrations, which is shown to be the cause of the specific temperature dependence of the iron-histidine band. The anharmonic coupling and the dependence of the dipole transition moment of the charge transfer optical absorption band III on the iron-porphyrin distance cause the anomalous temperature and pressure dependencies of this band. It is shown that the change in both the magnitude and the distribution of the iron-porphyrin distance is expected to affect the band III intensity. Consequently, the stationarity of the band III intensity can be considered as a signature of the stationarity of the iron-porphyrin distance and its distribution in deoxyheme proteins, whereas the band III position and width could be also affected by the change in the protein electric field, caused by the protein globule dynamics.  相似文献   

20.
A resonance Raman band involving significantly the iron(III)-histidine stretching (upsilonFe-His) character is identified for metmyoglobin (metMb) through isotope sensitivity of its low-frequency resonance Raman bands, but the identification was not successful for methemoglobin (metHb) and its isolated alpha and beta subunits. A band at 218 cm-1 of natural abundance metMb exhibited a low-frequency shift for 15N-His-labeled metMb (-1.4 cm-1 shift), while the strong porphyrin bands at 248 and 271 cm-1 did not shift significantly. The frequency of the 218-cm-1 band of metMb decreased by 1.6 cm-1 in D2O, probably due to Ndelta-deuteration of the proximal His, in a similar manner to that of the upsilonFe-His band of deoxyMb in D2O. This 218-cm-1 band shifted slightly to a lower frequency in H2(18)O, whereas it did little upon 54Fe isotopic substitution (<0.3 cm-1), presumably because of the six-coordinate structure. The lack of the 54Fe-isotope shift shows that the 218-cm-1 band is specific to metMb and not due to the deoxy species. The intensity of this band decreased for hydroxymetMb and was indiscernible for cyanometMb. For metHb and its alpha and beta subunits, however, the frequencies of the band around 220 cm-1 were not D2O sensitive. These results suggest an assignment of the band around 220 cm-1 to a pyrrole tilting mode, which significantly contains the Fe-His stretching character for metMb but scarcely for metHb and its subunits. The differences in the isotope sensitivity of this band in different proteins are considered to reflect the heme distortion from the planarity and the Fe-His geometry specific to individual proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号