首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Application of cholesterol-free liposomes as carriers for anticancer drugs is hampered, in part, because of standard pH gradient based loading methods that rely on incubation temperatures above the phase transition temperature (Tc) of the bulk phospholipid to promote drug loading. In the absence of cholesterol, liposome permeability is enhanced at these temperatures which, in turn, can result in the collapse of the pH gradient and/or unstable loading. Doxorubicin loading studies, for example, indicate that the drug could not be loaded efficiently into cholesterol-free DSPC liposomes. We demonstrated that this problem could be circumvented by the addition of ethanol as a permeability enhancer. Doxorubicin loading rates in cholesterol-free DSPC liposomes were 6.6-fold higher in the presence of ethanol. In addition, greater than 90% of the added doxorubicin was encapsulated within 2 h at 37 degrees C, an efficiency that was 2.3-fold greater than that observed in the absence of ethanol. Optimal ethanol concentrations ranged from 10% to 15% (v/v) and these concentrations did not significantly affect liposome size, retention of an aqueous trap marker (lactose) or, most importantly, the stability of the imposed pH gradient. Cryo-transmission electron micrographs of liposomes exposed to increasing concentrations of ethanol indicated that at 30% (v/v) perturbations to the lipid bilayer were present as evidenced by the appearance of open liposomes and bilayer sheets. Ethanol-induced increased drug loading was temperature-, lipid composition- and lipid concentration-dependent. Collectively, these results suggest that ethanol addition to preformed liposomes is an effective method to achieve efficient pH gradient-dependent loading of cholesterol-free liposomes at temperatures below the Tc of the bulk phospholipid.  相似文献   

2.
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependant drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 °C or 30% at 37 °C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.  相似文献   

3.
The pH of the medium during the formation of liposomes by the cholate dialysis method affects their size. Liposomal size as measured by electron microscopy and volume equilibration is greatest if the dialysis step is carried out at pH 6 and decreases as the pH increases. The effect of liposome size on estimations of their incorporated choline carrier activity is illustrated.  相似文献   

4.
Several examples of two-step sequential reactions exist where, because of the poor equilibrium conversion by the first reaction, it is desirable to conduct the two reactions simultaneously. In such a scheme, the product of the first reaction is continuously removed by the second reaction, thus not allowing the first reaction to approach chemical equilibrium. Therefore, the first reaction is allowed to proceed in the desired direction at an appreciable rate. However, in many biochemical applications where enzyme catalysts are involved, the enzyme's activities are strong functions of pH. Where the pH optima of the first and second reaction differ by three to four units, the above reaction scheme would be difficult to implement. In these cases, the two reactions can be separated by a thin permeable membrane across which the desired pH gradient is maintained. In this article, it was shown, both by theory and experiment, that a thin, flat membrane of immobilized urease can accomplish this goal when one face of the membrane is exposed to the acidic bulk solution (pH(b) = 4.5) containing a small quantity of urea (0.01 M). In this particular case, the ammonia that was produced in the membrane consumed the incoming hydrogen ions and thus maintained the desired pH gradient. Experimental results indicate that with sufficient urease loading, the face of the membrane opposite to the bulk solution could be maintained at a pH that would allow many enzymes to realize their maximum activities ( approximately 7.5). It was also found that this pH gradient could be maintained even in the presence of a buffer, which greatly enhances the transport of protons into the membrane. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
Although liposomes have proven useful for the delivery of drugs and gene therapy vectors, their potencies are often compromised by poor unloading following uptake into their target cells. We have consequently explored the properties of a novel 29-residue amphipathic peptide that was designed by arrangement of hydrophobic and hydrophilic residues to disrupt liposomes at lower peptide concentrations than previously tested peptides. The peptide was indeed found to promote pH-dependent liposome unloading with improved efficiency. A peptide of the same sequence, but half the length, however, promoted pH-dependent permeabilization only at much higher concentrations. Further characterization of the longer peptide revealed that release of liposome contents (i) occurred at a pH of ∼6, (ii) became less efficient as the size of the encapsulated cargo increased, and (iii) was moderately suppressed in cholesterol-containing liposomes. Use of this peptide to enhance the cytotoxicity of cytosine arabinoside encapsulated in folate-targeted liposomes demonstrated an increase in drug potency of ∼30-fold. Gene expression by a serum-stable folate-targeted liposomal vector was also measurably enhanced by inclusion of the peptide. We conclude that intracellular unloading of liposomal contents can be significantly improved by co-encapsulation of an optimally designed, pH-sensitive peptide.  相似文献   

6.
Abstract Chemical gradients can easily be established in agar gels to test behaviour of bacteria in respect to two variables. Agar plates with pH and NaCl gradients have provided a simple technique for useful comparison of heterotrophic bacteria and the present paper extends observations to non-sulphur purple photosynthetic bacteria.  相似文献   

7.
Monospecies Citrobacter sp. biofilms were grown in a laminar flow cell using a carbon-limiting medium. Microelectrode measurements showed no change in pH between the bulk fluid and biofilm when the flow cell was supplied with the carbon-limiting medium under static or flowing conditions. When the biofilm was supplied with a phosphate-limiting medium the biofilm became more acidic than the bulk fluid and developed a gradient within. The implications for metals-bioremediation processes are discussed.  相似文献   

8.
Summary Experiments were performed to determine the factors which contribute to the transmembrane pH gradient (pH) and the potential gradient () in apical plasma membrane vesicles isolated from bovine tracheal epithelium. As indicated by the accumulation of14C-methylamine, the vesicles maintained a pH (inside acidic) which was dependent upon the external pH. The pH was also proportional to the ionic strength of the suspending medium, suggesting that the H+ distribution was dictated by a Donnan potential. Measurements of the distribution of86Rb+ demonstrated an electrical potential gradient across the vesicle membrane, inside negative which was proportional to the medium ionic strength. pH changed in parallel with in response to a variety of imposed conditions. These results are compatible with the existence of a H+ conductance in the vesicle membrane. Thus the endogenous electrical and proton gradients may be manipulated and used as a general experimental tool to complement kinetic analysis in investigations of transport mechanism using isolated vesicle preparations.  相似文献   

9.
A modified and derived ethanol injection (MDEI) process was developed to produce liposomes. The aim of the present study was to more efficiently control the vesicle diameter than with the conventional ethanol injection method. A hot ethanolic solution of lipids (60°C) was injected into a hot aqueous buffer (70°C). Then, ethanol was removed by rotary evaporation under reduced pressure. The size of the liposomes could be controlled by the ratio of ethanol to hydroalcoholic solution before evaporation. The concentration of lipids, the charge of lipids, and the type of aqueous phase had little effect on the vesicle diameter when the process involved a ratio of 33% (v/v) ethanol. In addition, it was possible to obtain lipid concentrations 10- to 30-fold higher that the conventional ethanol injection method. The encapsulation of a hydrophilic compound was feasible with this MDEI process. The observation by cryogenic transmission electron microscopy revealed that these liposomes were predominantly unilamellar at a ratio as high as 33 or 50% (v/v) ethanol. Thus, the results showed that MDEI is an appropriate alternative for the manufacture of liposomes with respect to the ethanol injection process.  相似文献   

10.
Accurate real-time measurements of proton concentration gradients are pivotal to mechanistic studies of proton translocation by membrane-bound enzymes. Here we report a detailed characterization of the pH-sensitive fluorescent nanoprobe Glu3, which is well suited for pH measurements in microcompartmentalized biological systems. The probe is a polyglutamic porphyrin dendrimer in which multiple carboxylate termini ensure its high water solubility and prevent its diffusion across phospholipid membranes. The probe’s pK is in the physiological pH range, and its protonation can be followed ratiometrically by absorbance or fluorescence in the ultraviolet-visible spectral region. The usefulness of the probe was enhanced by using a semiautomatic titration system coupled to a charge-coupled device (CCD) spectrometer, enabling fast and accurate titrations and full spectral coverage of the system at millisecond time resolution. The probe’s pK was measured in bulk solutions as well as inside large unilamellar vesicles in the presence of physiologically relevant ions. Glu3 was found to be completely membrane impermeable, and its distinct spectroscopic features permit pH measurements inside closed membrane vesicles, enabling quantitative mechanistic studies of membrane-spanning proteins. Performance of the probe was demonstrated by monitoring the rate of proton leakage through the phospholipid bilayer in large vesicles with and without the uncoupler gramicidin present. Overall, as a probe for biological proton translocation measurements, Glu3 was found to be superior to the commercially available pH indicators.  相似文献   

11.
Ischemia–reperfusion damage is a problem in organ transplantation. Reactive oxygen species are produced in cells by blood-mediated reactions at the time of blood reperfusion. In this study, we developed a method to immobilize and internalize antioxidants in endothelial cells, using vitamin E-loaded liposomes. The liposomes loaded with vitamin E and human umbilical vein endothelial cells (HUVECs) were modified with poly(ethylene glycol)–phospholipid conjugates carrying 20-mer of deoxyadenylic acid (oligo(dA)20) and 20-mer of complementary deoxythymidylic acid (oligo(dT)20), respectively. The liposomes were effectively immobilized on HUVECs through DNA hybridization between oligo(dA)20 and oligo(dT)20. The liposomes loaded with vitamin E were gradually internalized into HUVECs. Then, the cells were treated with antimycin A to induce oxidative stress. We found the amount of reactive oxygen species was greatly reduced in HUVECs carrying vitamin E-loaded liposomes.  相似文献   

12.
U.I. Flügge  J. Gerber  H.W. Heldt 《BBA》1983,725(2):229-237
This report describes the influence of ΔpH on the transport of phosphate, triose phosphate and 3-phosphoglycerate catalyzed by the phosphate translocator in a reconstituted system. The H+ gradient across the liposome membrane is adjusted by the addition of external buffer solution and maintained for several minutes. The following results are obtained: (1) An inward directed H+ gradient leads to an increase of 3-phosphoglycerate transport and to a decrease of phosphate and triose phosphate transport. (2) An H+ gradient in the opposite direction results in a restriction of 3-phosphoglycerate influx whereas the influx of phosphate and triose phosphate is enhanced. (3) The magnitude of the pH effect depends on the internal substrate. Compared to the homoexchange mode, the effect of applied ΔpH is more pronounced in the heteroexchange mode. (4) Transport of phosphate and 3-phosphoglycerate is influenced by ΔpH in a different manner. In the case of phosphate and triose phosphate transport the observed effects are associated with changes in the apparent Km values whereas in the case of 3-phosphoglycerate transport the application of a pH gradient is linked to a change of Vmax. (5) In competition experiments with both substrates in the external medium, ΔpH influences the effect of phosphate as a competitive inhibitor of 3-phosphoglycerate transport whereas the effect of 3-phosphoglycerate on phosphate transport is not affected by a pH gradient. (6) The measured apparent Km and Vmax values under the influence of ΔpH can be used for the calculation of substrate fluxes across the envelope during illumination. It can be demonstrated that the increase of stromal pH in the light gives rise to a considerable change in the ratio of the substrates transported. Under conditions without pH gradient, the species transported out is mainly 3-phosphoglycerate and the species transported in is mainly triose phosphate. These fluxes are reversed when a pH gradient is applied (light conditions).  相似文献   

13.
Bacteriorhodopsin pumps protons across a membrane using the energy of light. The proton pumping is inhibited when the transmembrane proton gradient that the protein generates becomes larger than four pH units. This phenomenon is known as the back-pressure effect. Here, we investigate the structural basis of this effect by predicting the influence of a transmembrane pH gradient on the titration behavior of bacteriorhodopsin. For this purpose we introduce a method that accounts for a pH gradient in protonation probability calculations. The method considers that in a transmembrane protein, which is exposed to two different aqueous phases, each titratable residue is accessible for protons from one side of the membrane depending on its hydrogen-bond pattern. This method is applied to several ground-state structures of bacteriorhodopsin, which residues already present complicated titration behaviors in the absence of a proton gradient. Our calculations show that a pH gradient across the membrane influences in a non-trivial manner the protonation probabilities of six titratable residues which are known to participate in the proton transfer: D85, D96, D115, E194, E204, and the Schiff base. The residues connected to one side of the membrane are influenced by the pH on the other side because of their long-range electrostatic interactions within the protein. In particular, D115 senses the pH at the cytoplasmic side of the membrane and transmits this information to D85 and the Schiff base. We propose that the strong electrostatic interactions found between D85, D115, and the Schiff base as well as the interplay of their respective protonation states under the influence of a transmembrane pH gradient are responsible for the back-pressure effect on bacteriorhodopsin.  相似文献   

14.
Novel wrapped liposomes comprised of polyanion drug and cationic lipid complexes wrapped with neutral lipids were prepared using an efficient, innovative procedure. In this study, dextran fluorescein anionic (DFA) was used as an example of a polyanionic compound. During the process, neutral lipids accumulated around the complexes and eventually covered the complexes. The resulting liposomes were 120-140 nm in diameter and the encapsulation efficiency was up to 90%. In fetal bovine serum, DFA/cationic lipid complexes degraded rapidly but the wrapped liposomes were considerably more stable. Following intravenous administration to rats, DFA/cationic lipid complexes were rapidly eliminated whereas the wrapped liposomes exhibited a much longer blood half-life. These data suggest that DFA is located on the surface of the complexes, but DFA is present inside the wrapped liposomes. The drug-delivery properties of the wrapped liposomes established in the present study suggests that formulations based on this technology could offer important advantages for the administration of many types of drug including antisense oligonucleotides, plasmids and siRNAs which may therefore lead to improved therapeutic effectiveness of this range of drugs. The method of preparation of the wrapped liposomes is so simple that it should be straightforward to adapt to a manufacturing scale.  相似文献   

15.
S. Ogawa  C. Shen  C.L. Castillo 《BBA》1980,590(2):159-169
31P-NMR has been used to study the increase of ΔpH in mitochondria by externally added ATP. Freshly prepared mitochondria was treated with N-ethylmaleimide to inhibit the exchange between internal and external Pi. Upon addition of ATP, phosphocreatine (30 mM) and creatine kinase to a NMR sample of mitochondria suspension (approx. 120 mg protein/ml) at 0°C, an increase of ΔpH by approx. 0.5 pH unit was observed. However the increased ΔpH could not be maintained, but slowly decayed along with the increase of external ADP/ATP ratio. Further addition of valinomycin to the suspension induced a larger ΔpH (approx. 1) which was maintained by the increased rate of internal ATP hydrolysis as seen in the growth of the internal Pi peak intensity in NMR spectra and the concomitant decrease of the external phosphocreatine peak. The external Pi and ATP peaks stayed virtually constant. When carboxyatractyloside was added to inhibit the ATP/ADP translocase, the internal Pi increase was stopped and the ΔpH decayed. These observations in conjunction with those made earlier in respiring mitochondria clearly show the reversible nature of the ATPase function in which the internal ATP hydrolysis is associated with outward pumping of protons.  相似文献   

16.
In two-dimensional gel electrophoresis of the high mobility group (HMG) proteins, it has proved necessary to use nonequilibrium pH gradient electrophoresis (NEPHGE) in the first dimension rather than isoelectric focusing, because of the basic character of most of the HMG proteins [D. Tyrell, P. J. Isackson, and G. R. Reeck (1982) Anal. Biochem. 119, 433-439]. In this paper it is reported that in samples that contain histones, the mobilities of HMG proteins (particularly HMG-1, HMG-2, and HMG-E) are severely distorted in NEPHGE. This presumably results from formation of complexes between histones and HMG proteins through ionic interactions. Analysis of HMG proteins by NEPHGE/sodium dodecyl sulfate-gel electrophoresis is thus precluded in samples containing histones. Our results raise the possibility of similar artifacts occurring in NEPHGE (or isoelectric focusing) analysis of other proteins with regions of high charge density.  相似文献   

17.
A new technique for generating extended pH gradients (5 pH units) in Immobiline gels is reported. The previously described (J. Biochem. Biophys. Methods 7, 1983, 123-142) five-chamber gradient mixer has been replaced by a two-vessel device. A single mixture of the available Immobilines (pK 3.6, 4.6, 6.2, 7.0, 8.5 and 9.3) is made, with relative concentrations adjusted so as to produce the most uniform buffering power throughout the desired pH interval. This mixture is then divided into two portions, which are titrated to the extremes of the required pH span with an acidic titrant (Immobiline pK approximately 1) and a basic species (Immobiline pK 9.95). Highly reproducible pH gradients (pH 4-9) are thus generated, which appear extremely useful for the first dimensioned of 2-dimensional techniques. Our previously reported computer program has been implemented with an optimization algorithm which, given any cocktail of Immobilines, automatically adjusts the relative initial concentrations until the smoothest possible beta power is found. For the first time it is possible to perform IEF under controlled physico-chemical parameters: pH span and linearity, beta power, ionic strength and molarity of the buffering species.  相似文献   

18.
The reverse phase evaporation procedure was used to prepare large unilamellar liposomes containing bacteriorhodopsin. Electron microscopy showed that proteoliposomes were unilamellar and fairly uniform in size provided the preparation was extruded through calibrated nucleopore membranes : the vesicles have diameters around 200 nm. The spectral properties of the bacteriorhodopsin in the large liposomes resembled those of bacteriorhodopsin in purple membrane. Furthermore, the chromoprotein in the reconstituted vesicles had an inside-out orientation and on illumination, translocated protons efficiently from the external medium into the vesicles in the presence of the ionophore valinomycin. In the absence of the latter, a light-independent transmembrane potential of about 60 mV was measured from thiocyanate distribution. In the presence of valinomycin, this transmembrane electrical potential was abolished and then a light-dependent transmembrane pH gradient of about 2 pH units could be generated.  相似文献   

19.
Recently, we have developed a high-resolution two-dimensional separation strategy for the analysis of complex peptide mixtures. This methodology employs isoelectric focusing of peptides on immobilized pH gradient (IPG) gels in the first dimension, followed by reversed-phase chromatography in the second dimension, and subsequent tandem mass spectrometry analysis. The traditional approach to this mixture problem employs strong-cation-exchange (SCX) chromatography in the first dimension. Here, we present a direct comparison of these two first-dimensional techniques using complex protein samples derived from the testis of Rattus norvegicus. It was found that the use of immobilized pH gradients (narrow range pH 3.5-4.5) for peptide separation in the first dimension yielded 13% more protein identifications than the optimized off-line SCX approach (employing the entire pI range of the sample). In addition, the IPG technique allows for a much more efficient use on mass spectrometer analysis time. Separation of a tryptic digest derived from a rat testis sample on a narrow range pH gradient (over the 3.5-4.5 pH range) yielded 7626 and 2750 peptides and proteins, respectively. Peptide and protein identification was performed with high confidence using SEQUEST in combination with a data filtering program employing pI and statistical based functions to remove false-positives from the data.  相似文献   

20.
The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 105 slower than facilitated inward transport across biological membranes. This suggests that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 1010 times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g., for certain signal sequences, toxins and thylakoid proteins) in vivo.Abbreviations LUV large unilamellar vesicle - pH transmembrane pH gradient - PAH polyaromatic hydrocarbon Correspondence to: A.C. Chakrabarti  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号