首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristic Mn hyperfine 'multiline' signal exhibited in the S2 state of the oxygen-evolving complex (OEC) complex of Photosystem II (PSII) has been shown to be heterogeneous in character. In this study, we have explored the effects that influence the proportions of the two forms of the S2 state multiline signal present in any sample. The narrow form of the signal is lost upon storage (weeks) at 77 K, whereas the broad form remains. In particular, we explore the roles of ethanol and methanol as well as effects of the second turnover of the enzyme on storage of the sample at 77 K. We find that in samples containing methanol, the narrow form may predominate upon the first flash, but the broad form predominates on the fifth flash and also in samples containing ethanol.  相似文献   

2.
《BBA》1986,851(2):193-201
The role of chloride on the S-state transition in spinach Photosystem II (PS II) particles was investigated by EPR spectroscopy at low temperature and the following results were obtained. (1) After excitation by continuous light at 200 K, chloride-depleted particles did not show the EPR multiline signal associated with the S2 state, but only showed the broad signal at g = 4.1. The S2 multiline signal was completely restored upon chloride repletion. (2) In the absence of chloride the S2 multiline signal was not induced by a single flash excitation at 0°C. However, upon addition of chloride after the flash the signal was developed in darkness. (3) The amplitude of the multiline S2 signal thus developed upon chloride addition after flash illumination did not show oscillations dependent upon flash number. These results indicate that the O2-evolving complex in chloride-depleted PS II membranes is able to store at least one oxidizing equivalent, a modified S2 state, which does not give rise to the multiline signal. Addition of chloride converts this oxidizing equivalent to the normal S2 state which gives rise to the multiline signal. The modified S2 state is more stable than the normal S2 state, showing decay kinetics about 20-times slower than those of the normal S2 state, and the formation of higher S states is blocked.  相似文献   

3.
We have investigated the effects of temperature on the formation and decay of the light-induced multiline EPR signal species associated with photosynthetic oxygen evolution (Dismukes, G.C. and Siderer, Y. (1980) FEBS Lett. 121, 78–80). (1) The decay rate following illumination is temperature dependent: at 295 K the half-time of decay is about 40 s, at 253 K the half-time is approx. 40 min. (2) A single intense flash of light becomes progressively less effective in generating the multiline signal below about 240 K. (3) Continuous illumination is capable of generating the signal down to almost 160 K. (4) Continuous illumination after a preilluminating flash generates less signal above 200 K than at lower temperatures. Our results support the conclusion of Dismukes and Siderer that the S2 state gives rise to this multiline signal; we find that the S1 state can be fully advanced to the S2 state at temperatures as low as 160 K. The S2 state is capable of further advancement at temperatures above about 210 K, but not below that temperature.  相似文献   

4.
Nugent JH  Muhiuddin IP  Evans MC 《Biochemistry》2003,42(18):5500-5507
Previous work in many laboratories has established that hydroxylamine reduces the S(1) state of the water oxidizing complex (WOC) in one-electron steps. Significant levels of what can now be defined as the S(-1)* state are achieved by specific (concentration and incubation length) hydroxylamine treatments. This state has already been studied by electron paramagnetic resonance spectrometry (EPR), and unusual EPR signals were noted (for example, see Sivaraja, M., and Dismukes, G. C. (1988) Biochemistry 27, 3467-3475). We have now reinvestigated these initial experiments and confirmed many of the original observations. We then utilized more recent EPR markers for the S(0) and S(1) states to further explore the S(-1)* state. The broad radical "split" type EPR signal, produced by 200 K illumination of samples prepared to give a high yield of the S(-1)* state, is shown to most likely reflect a trapped intermediate state between S(-1)* and S(0)*, since samples where this signal is present can be warmed in the dark to produce S(0)*. The threshold for advancement from S(-1)* to S(0)* is near 200 K, as the yield of broad radical decreases and S(0)* multiline EPR signal increases with length of 200 K illumination. Advancement of S(0)* to S(1) is limited at 200 K, but S(1) can be restored by 273 K illumination. Illumination of these hydroxylamine-treated samples at temperatures below 77 K gives a second broad radical EPR signal. The line shape, decay, and other properties of this new radical signal suggest that it may arise from an interaction in the S(-2)* or lower S states, which are probably present in low yield in these samples. Illumination below 20 K of S(0)* state samples containing methanol, and therefore exhibiting the S(0) multiline signal, gives rise to a third broad radical with distinctive line shape. The characteristics of the three broad radicals are similar to those found from interactions between Y(Z)(*) and other S states. The evidence is presented that they do represent intermediate states in S state turnover. Further work is now needed to identify these radicals.  相似文献   

5.
A comparative study of X-band EPR and ENDOR of the S2 state of photosystem II membrane fragments and core complexes in the frozen state is presented. The S2 state was generated either by continuous illumination at T=200 K or by a single turn-over light flash at T=273 K yielding entirely the same S2 state EPR signals at 10 K. In membrane fragments and core complex preparations both the multiline and the g=4.1 signals were detected with comparable relative intensity. The absence of the 17 and 23 kDa proteins in the core complex preparation has no effect on the appearance of the EPR signals. 1H-ENDOR experiments performed at two different field positions of the S2 state multiline signal of core complexes permitted the resolution of four hyperfine (hf) splittings. The hf coupling constants obtained are 4.0, 2.3, 1.1 and 0.6 MHz, in good agreement with results that were previously reported (Tang et al. (1993) J Am Chem Soc 115: 2382–2389). The intensities of all four line pairs belonging to these hf couplings are diminished in D2O. A novel model is presented and on the basis of the two largest hfc's distances between the manganese ions and the exchangeable protons are deduced. The interpretation of the ENDOR data indicates that these hf couplings might arise from water which is directly ligated to the manganese of the water oxidizing complex in redox state S2.Abbreviations cw continuous wave - ENDOR electron nuclear double resonance - EPR electron paramagnetic resonance - hf hyperfine - hfc hyperfine coupling - MLS multiline signal - PS II Photosystem II - rf radio frequency - WOC water oxidizing complex  相似文献   

6.
The long-lived, light-induced radical YD of the Tyr161 residue in the D2 protein of Photosystem II (PSII) is known to magnetically interact with the CaMn4 cluster, situated ∼ 30 Å away. In this study we report a transient step-change increase in YD EPR intensity upon the application of a single laser flash to S1 state-synchronised PSII-enriched membranes from spinach. This transient effect was observed at room temperature and high applied microwave power (100 mW) in samples containing PpBQ, as well as those containing DCMU. The subsequent decay lifetimes were found to differ depending on the additive used. We propose that this flash-induced signal increase was caused by enhanced spin relaxation of YD by the OEC in the S2 state, as a consequence of the single laser flash turnover. The post-flash decay reflected S2 → S1 back-turnover, as confirmed by their correlations with independent measurements of S2 multiline EPR signal and flash-induced variable fluorescence decay kinetics under corresponding experimental conditions. This flash-induced effect opens up the possibility to study the kinetic behaviour of S-state transitions at room temperature using YD as a probe.  相似文献   

7.
A.W. Rutherford  A.R. Crofts  Y. Inoue 《BBA》1982,682(3):457-465
A single flash given at − 15°C to chloroplasts results in charge separation in Photosystem II to form a stable state which, upon warming, recombines giving rise to luminescence. This recombination occurs at 25°C in untreated chloroplasts but is shifted to 0°C in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea or weak concentrations of a reducing agent. The luminescence at 0°C is attributed to recombination of the S2QA state while that at 25°C is attributed to recombination of S2QAQB (and S3QAQB upon further flash illumination). The identification of the thermoluminescence at 25°C is based upon the following experimental evidence: (1) illumination of chloroplasts in the presence of methyl viologen with 710 nm light before and after flash illumination has no effect on the extent or temperature of the thermoluminescence. This is taken as evidence that the plastoquinone pool is not involved in the recombination reaction. (2) Calculations of the extent of thermoluminescence expected after a number of flashes, assuming that S2QAQB and S3QAQB are the thermoluminescent reactants, give a good fit to the experimental results. (3) The effect of continuous illumination at 77 K (i.e., donation from cytochrome b-559 to QA and thence to QB or QB) results in predictable changes in the extent of flash-induced thermoluminescence.  相似文献   

8.
Zhang C  Styring S 《Biochemistry》2003,42(26):8066-8076
The effect of illumination at 5 K of photosystem II in different S-states was investigated with EPR spectroscopy. Two split radical EPR signals around g approximately 2.0 were observed from samples given 0 and 3 flashes, respectively. The signal from the 0-flash sample was narrow, with a width of approximately 80 G, in which the low-field peak can be distinguished. This signal oscillated with the S(1) state in the sample. The signal from the 3-flash sample was broad, with a symmetric shape of approximately 160 G width from peak to trough. This signal varied with the concentration of the S(0) state in the sample. Both signals are assigned to arise from the donor side of PSII. Both signals relaxed fast, were formed within 10 ms after a flash, and decayed with half-times at 5 K of 3-4 min. The signal in the S(0) state closely resembles split radical signals, originating from magnetic interaction between Y(Z)(*) and the S(2) state, that were first observed in Ca(2+)-depleted photosystem II samples. Therefore, we assign this signal to Y(Z)(*) in magnetic interaction with the S(0) state, Y(Z)(*)S(0). The other signal is assigned to the magnetic interaction between Y(Z)(*) and the S(1) state, Y(Z)(*)S(1). An important implication is that Y(Z) can be oxidized at 5 K in the S(0) and S(1) states. Oxidation of Y(Z) involves deprotonation of the tyrosine. This is restricted at 5 K, and we therefore suggest that the phenolic proton of Y(Z) is involved in a low-barrier hydrogen bond. This is an unusually short hydrogen bond in which proton movement at very low temperatures can occur.  相似文献   

9.
We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77?K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100?fs) energy transfer channel from the fucoxanthin S2 state is active and is complemented by the second pathway via the combined S1/ICT state. The S1/ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5?ps at room temperature and 6.6?ps at 77?K. The overall energy transfer via the S1/ICT is faster at 77?K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950?nm and applied at 2?ps after excitation, proved that the S1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S1/ICT-Chl a route is the S1 part of the S1/ICT potential surface.  相似文献   

10.
John L. Casey  Kenneth Sauer 《BBA》1984,767(1):21-28
In Photosystem II preparations at low temperature we were able to generate and trap an intermediate state between the S1 and S2 states of the Kok scheme for photosynthetic oxygen evolution. Illumination of dark-adapted, oxygen-evolving Photosystem II preparations at 140 K produces a 320-G-wide EPR signal centered near g = 4.1 when observed at 10 K. This signal is superimposed on a 5-fold larger and somewhat narrower background signal; hence, it is best observed in difference spectra. Warming of illuminated samples to 190 K in the dark results in the disappearance of the light-induced g = 4.1 feature and the appearance of the multiline EPR signal associated with the S2 state. Low-temperature illumination of samples prepared in the S2 state does not produce the g = 4.1 signal. Inhibition of oxygen evolution by incubation of PS II preparations in 0.8 M NaCl buffer or by the addition of 400 μM NH2OH prevents the formation of the g = 4.1 signal. Samples in which oxygen evolution is inhibited by replacement of Cl? with F? exhibit the g = 4.1 signal when illuminated at 140 K, but subsequent warming to 190 K neither depletes the amplitude of this signal nor produces the multiline signal. The broad signal at g = 4.1 is typical for a S = 52 spin system in a rhombic environment, suggesting the involvement of non-heme Fe in photosynthetic oxygen evolution.  相似文献   

11.
The pulsed EPR inversion recovery sequence has been utilized to monitor the temperature dependence of the electron spin-lattice relaxation rate of the Mn cluster of the Photosystem II oxygen evolving complex poised in a variety of S 2 state forms giving rise to g = 2 multiline EPR signals. A previous study (Lorigan and Britt (1994) Biochemistry 33: 12072–12076) showed that for PS II membranes treated with 5% ethanol, the S 2 state Mn cluster relaxes via the Orbach spin-lattice relaxation mechanism, where the relaxation is enhanced via phonon scattering off an excited state spin manifold, in this case at an energy of Δ = 36.5 cm−1 above the S = 1/2 ground state giving rise to the multiline EPR signal. Parallel experiments are reported for PS II membranes with 5% methanol, treated with ammonia, and following short and long term dark adaptation. In each case, the temperature dependence of the electron spin-lattice relaxation rate is consistent with Orbach relaxation, and the range of excited state energies is relatively narrow (33.8 cm−1 ≤ Δ ≤ 39.7 cm−1). In addition, short term dark adapted (6 min, ‘active state’) PS II membranes show biphasic recovery traces which indicate that a minority fraction of the oxygen evolving complexes are trapped in a form with greatly slowed spin-lattice relaxation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
A light-driven reaction model for the Ca2+-depleted Photosystem (PS) II is proposed to explain the split signal observed in electron paramagnetic resonance (EPR) spectra based on a comparison of EPR assignments with recent x-ray structural data. The split signal has a splitting linewidth of 160 G at around g = 2 and is seen upon illumination of the Ca2+-depleted PS II in the S2 state associated with complete or partial disappearance of the S2 state multiline signal. Another g=2 broad ESR signal with a 110 G linewidth was produced by 245 K illumination for a short period in the Ca2+-depleted PS II in S1 state. At the same time a normal YZ· radical signal was also efficiently trapped. The g=2 broad signal is attributed to an intermediate S1X· state in equilibrium with the trapped YZ· radical. Comparison with x-ray structural data suggests that one of the split signals (doublet signal) is attributable to interaction between His 190 and the YZ· radical, and other signals is attributable to interaction between His 337 and the manganese cluster, providing further clues as to the mechanism of water oxidation in photosynthetic oxygen evolution.  相似文献   

13.
The oxygen production of dark-adapted Photosystem II upon illumination by a series of single-turnover flashes shows a damped period four oscillation with flash number. The damping is attributed to `misses' resulting from a statistical probability that a reaction center fails to produce a stable charge separation after a saturating flash. The origin of misses is of interest because its probable dependence on flash number, in principle, affects the quantitative interpretation of all measurements on phenomena associated with the period four oscillation. We show that the kinetics of chlorophyll fluorescence yield transients induced by a flash series can be used to estimate the relative amplitudes of the miss probability on each flash. It is concluded that a major part of the misses must be caused by failure of the reduction of the oxidized primary electron donor chlorophyll P680+ by the secondary donor tyrosine YZ before the charge separation is lost by recombination. The probability of this failure is found to increase with the oxidation state of the oxygen-evolving complex: more than half of it occurs upon charge separation in the S3 state, which is attributed to the presence of YZ ox S2 in Boltzmann equilibrium with YZS3. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The manganese complex (Mn4) which is responsible for water oxidation in photosystem II is EPR detectable in the S2-state, one of the five redox states of the enzyme cycle. The S2-state is observable at 10?K either as an EPR multiline signal (spin S?=?1/2) or as a signal at g?=?4.1 (spin S?=?3/2 or 5/2). It has recently been shown that the state responsible for the multiline signal is converted to that responsible for the g?=?4.1 signal upon the absorption of near-infrared light [Boussac A, Girerd J-J, Rutherford AW (1996) Biochemistry 35?:?6984–6989]. It is shown here that the yield of the spin interconversion may be variable and depends on the photosystem II (PSII) preparations. The EPR multiline signal detected after near-infrared illumination, and which originates from PSII centers not susceptible to the near-infrared light, is shown to be different from that which originates from infrared-susceptible PSII centers. The total S2-multiline signal results from the superposition of the two multiline signals which originate from these two PSII populations. One S2 population gives rise to a "narrow" multiline signal characterized by strong central lines and weak outer lines. The second population gives rise to a "broad" multiline signal in which the intensity of the outer lines, at low and high field, are proportionally larger than those in the narrow multiline signal. The larger the relative amplitude of the outer lines at low and high field, the higher is the proportion of the near-infrared-susceptible PSII centers and the yield of the multiline to g?=?4.1 signal conversion. This inhomogeneity of the EPR multiline signal is briefly discussed in terms of the structural properties of the Mn4 complex.  相似文献   

15.
Photosystem II (PSII) catalyzes the oxidation of water to O2 at the manganese-containing, oxygen-evolving complex (OEC). Photoexcitation of PSII results in the oxidation of the OEC; four sequential oxidation reactions are required for the generation and release of molecular oxygen. Therefore, with flash illumination, the OEC cycles among five S n states. Chloride depletion inhibits O2 evolution. However, the binding site of chloride in the OEC is not known, and the role of chloride in oxygen evolution has not as yet been elucidated. We have employed reaction-induced FT-IR spectroscopy and selective flash excitation, which cycles PSII samples through the S state transitions. On the time scale employed, these FT-IR difference spectra reflect long-lived structural changes in the OEC. Bromide substitution supports oxygen evolution and was used to identify vibrational bands arising from structural changes at the chloride-binding site. Contributions to the vibrational spectrum from bromide-sensitive bands were observed on each flash. Sulfate treatment led to an elimination of oxygen evolution activity and of the FT-IR spectra assigned to the S3 to S0 (third flash) and S0 to S1 transitions (fourth flash). However, sulfate treatment changed, but did not eliminate, the FT-IR spectra obtained with the first and second flashes. Solvent isotope exchange in chloride-exchanged samples suggests flash-dependent structural changes, which alter protein dynamics during the S state cycle. Supported by NSF MCB 03-55421.  相似文献   

16.
《BBA》2023,1864(4):148994
An alternative charge separation pathway in Photosystem II under the far-red light was proposed by us on the basis of electron transfer properties at 295 K and 5 K. Here we extend these studies to the temperature range of 77–295 K with help of electron paramagnetic resonance spectroscopy. Induction of the S2 state multiline signal, oxidation of Cytochrome b559 and ChlorophyllZ was studied in Photosystem II membrane preparations from spinach after application of a laser flashes in visible (532 nm) or far-red (730–750 nm) spectral regions. Temperature dependence of the S2 state signal induction after single flash at 730–750 nm (Tinhibition ~ 240 K) was found to be different than that at 532 nm (Tinhibition ~ 157 K). No contaminant oxidation of the secondary electron donors cytochrome b559 or chlorophyllZ was observed. Photoaccumulation experiments with extensive flashing at 77 K showed similar results, with no or very little induction of the secondary electron donors. Thus, the partition ratio defined as (yield of YZ/CaMn4O5-cluster oxidation):(yield of Cytb559/ChlZ/CarD2 oxidation) was found to be 0.4 at under visible light and 1.7 at under far-red light at 77 K. Our data indicate that different products of charge separation after far-red light exists in the wide temperature range which further support the model of the different primary photochemistry in Photosystem II with localization of hole on the ChlD1 molecule.  相似文献   

17.
《BBA》1987,893(2):184-189
Replacement of H2O by 2H2O in oxygen-evolving Photosystem II preparations caused an increased resolution of the fine structure of the S2 state EPR spectrum. In both 2H2O and H2O samples, comparison of the S2 spectra generated by illumination at 200 and 283 K (10°C) showed a difference in the fine structure on the hyperfine lines. A reduction in the spacing of the outer hyperfine lines was also observed when samples illuminated at 283 K were compared to those where S2 was formed by 200 K illumination. The observations are interpreted as due to proton binding, perhaps as water, at or near the manganese complex giving rise to the S2 signal.  相似文献   

18.
Evidence was obtained for the interaction between the photosystem 2 (PS2) reaction centre (RC) chlorophyll (Chl) P680 and inorganic phosphate, Pi. The light-induced endogenous basal electron transport to ferricyanide in PS2 depended on endogenous Pi. The electron transport in phosphate deficient chloroplasts was absent, and could be resumed upon the addition of exogenous Pi or of the exogenous electron donor, diphenylcarbazide. Some chloroplast Chl molecules were apparently bound with Pi to a complex via the magnesium atom that was detected by the increase in absorbance in the Chl a absorption maximum at 435 nm observed after the consumption of endogenous Pi in the photophosphorylation reactions. The electron paramagnetic resonance (EPR) Signal I, found in the spectra at 77 K after irradiation of frozen samples in chloroplasts poor in endogenous Pi, was the sum of P700+ and P680+ signals. The P680+ signal disappeared after addition of Pi, diphenylcarbazide or diuron to the chloroplasts before freezing. In addition, the EPR doublet signal of the phosphate anion radicals was recorded at 77 K after irradiation in the ethanol solutions of Chl a containing potassium phosphate. The same doublet signal was discovered in the difference EPR spectrum "chloroplasts minus chloroplasts with diuron" at 77 K after irradation. The results are a possible evidence of the participation of phosphate ions in the primary light reactions of PS2.  相似文献   

19.
In this study, we probe the effects of bicarbonate (hydrogencarbonate), BC, removal from photosystem II in spinach thylakoids by measuring flash-induced oxygen evolution patterns (FIOPs) with a Joliot-type electrode. For this we compared three commonly employed methods: (1) washing in BC-free medium, (2) formate addition, and (3) acetate addition. Washing of the samples with buffers depleted of BC and CO2 by bubbling with argon (Method 1) under our conditions leads to an increase in the double hit parameter of the first flash (β1), while the miss parameter and the overall activity remain unchanged. In contrast, addition of 40–50 mM formate or acetate results in a significant increase in the miss parameter and to an ∼50% (formate) and ∼10% (acetate) inhibition of the overall oxygen evolution activity, but not to an increased β1 parameter. All described effects could be reversed by washing with formate/acetate free buffer and/or addition of 2–10 mM bicarbonate. The redox potential of the water-oxidizing complex (WOC) in samples treated by Method 1 is compared to samples containing 2 mM bicarbonate in two ways: (1) The lifetimes of the S0, S2, and S3 states were measured, and no differences were found between the two sample types. (2) The S1, S0, S−1, and S−2 states were probed by incubation with small concentrations of NH2OH. These experiments displayed a subtle, yet highly reproducible difference in the apparent Si/S−i state distribution which is shown to arise from the interaction of BC with PSII in the already reduced states of the WOC. These data are discussed in detail by also taking into account the CO2 concentrations present in the buffers after argon bubbling and during the measurements. These values were measured by membrane-inlet mass spectrometry (MIMS).  相似文献   

20.
Tyrosine Z (TyrZ) oxidation observed at liquid helium temperatures provides new insights into the structure and function of TyrZ in active Photosystem II (PSII). However, it has not been reported in PSII core complex from higher plants. Here, we report TyrZ oxidation in the S1 and S2 states in PSII core complex from spinach for the first time. Moreover, we identified a 500 G-wide symmetric EPR signal (peak position g = 2.18, trough position g = 1.85) together with the g = 2.03 signal induced by visible light at 10 K in the S1 state in the PSII core complex. These two signals decay with a similar rate in the dark and both disappear in the presence of 6% methanol. We tentatively assign this new feature to the hyperfine structure of the S1TyrZ EPR signal. Furthermore, EPR signals of the S2 state of the Mn-cluster, the oxidation of the non-heme iron, and the S1TyrZ in PSII core complexes and PSII-enriched membranes from spinach are compared, which clearly indicate that both the donor and acceptor sides of the reaction center are undisturbed after the removal of LHCII. These results suggest that the new spinach PSII core complex is suitable for the electron transfer study of PSII at cryogenic temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号