首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared effects of dimethylsulfoxide (Me2SO) and two polyols on the Ca2+-ATPase purified from human erythrocytes. As studied under steady-state conditions over a broad solute concentration range and temperature, Me2SO, glycerol, and xylitol do not inhibit the Ca2+-ATPase activity; this is in contrast to numerous other organic solutes that we have investigated. Under specific experimental conditions, Me2SO (but not glycerol) substantially increases Ca2+-ATPase activity, suggesting a possible facilitation of enzyme oligomerization. The activation is more pronounced at low Ca2+ concentrations. In contrast to glycerol, Me2SO shows no protective effect on enzyme structure as assessed by determining residual Ca2+-ATPase activity after exposing the enzyme to thermal denaturation at 45°C. Under these conditions several other organic solutes strongly enhance the denaturating effect of temperature. Because of the temperature dependence of its effect on the Ca2+-ATPase activity we believe that Me2SO activates the Ca2+-ATPase by indirect water-mediated interactions.  相似文献   

2.
Summary Conformational states in sarcoplasmic reticulum Ca2+-ATPase have been examined by tryptic and chymotryptic cleavage. High affinity Ca2+ binding (E1 state) exposes a peptide bond in the A fragment of the polypeptide chain to trypsin. Absence of Ca2+ (E2 state) exposes bonds in the B fragment, which are protected by binding of Mg2+ or ATP. After phosphorylation from ATP the tryptic cleavage pattern depends on the predominant phosphoenzyme species present. ADP-sensitive E1P and ADP-insensitive E2P have cleavage patterns identical to those of unphosphorylated E1 and E2, respectively, indicating that two major conformational states are involved in Ca2+ translocation. The transition from E1P to E2P is inhibited by secondary tryptic splits in the A fragment, suggesting that parts of this fragment are of particular importance for the energy transduction process.The tryptic cleavage patterns of phosphorylated forms of detergent solubilized monomeric Ca2+-ATPase were similar to those of the membrane-bound enzyme, indicating that Ca2+ translocation depends mainly on structural changes within a single peptide chain. On the other hand, the protection of the second cleavage site as observed after vanadate binding to membranous Ca2+-ATPase could not be achieved in the soluble monomeric enzyme. Shielding of this peptide bond may therefore be due to protein-protein interactions in the semicrystalline state of the vanadate-bound Ca2+-ATPase in membranous form.  相似文献   

3.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

4.
Summary The Ca2+-ATPase from rat liver microsomes has been solubilized in Triton X-100 and purified to homogeneity by ficollsucrose treatment, column chromatography with agarose-hexane adenosine 5-triphosphate Type 2, and high pressure liquid chromatography (HPLC). The purified enzyme obtained by this sequential procedure exhibited a 183-fold increase in specific activity. After ficoll-sucrose treatment, the activity of the Ca2+-ATPase was stable for at least two weeks when stored at –70°C. In SDS-polyacrylamide gels, several fractions from HPLC chromatography showed a single band at a position corresponding to a molecular weight of about 107 kDa. This value is consistent with the molecular weight of the phosphoenzyme intermediate of endoplasmic reticulum (ER) Ca2+-ATPase. Further characterization of the ER Ca2+-ATPase was performed by western immunoblots. Antiserum raised against the 100-kDa sarcoplasmic reticulum (SR) Ca2+-ATPase cross-reacted with the purified Ca2+-ATPase from rat liver ER membranes.  相似文献   

5.
The conformational states of Ca2+-ATPase in sarcoplasmic reticulum (SR) vesicles with or without a thousand-fold transmembrane Ca2+ gradient have been studied by fluorescence spectroscopy and fluorescence quenching. In consequence of the establishment of the transmembrane Ca2+ gradient, the steady-state fluorescence results revealed a reproducible 8% decrease in the intrinsic fluorescence while time-resolved fluorescence measurements showed that 13 tryptophan residues in SR · Ca2+-ATPase could be divided into three groups. The fluorescence lifetime of one of these groups increased from 5.5 ns to 5.95 ns in the presence of a Ca2+ gradient. Using KI and hypocrellin B (a photosensitive pigment obtained from a parasitic fungus, growing in Yunnan, China), the fluorescence quenching further indicated that the dynamic change of this tryptophan group, located at the protein-lipid interface, is a characteristic of transmembrane Ca2+ gradient-mediated conformational changes in SR · Ca2+-ATPase.Abbreviations SR sarcoplasmic reticulum - HB hypocrellin B - Trp tryptophan - DMSO dimethysulfoxide - Hepes N-2-hydroxyethyl piperazine-N-ethanesulfonic acad - SR(50005) SR vesicles with 1000-fold transmembrane Ca2+ gradient - SR(5050) SR vesicles without Ca2+ gradient - Ksv(app) apparent Stern-Volmer constant - Ksvi Stern-Volmer constant of component i for dynamic quenching  相似文献   

6.
We have developed a stable analog for the ADP-insensitive phosphoenzyme intermediate with two occluded Ca2+ at the transport sites (E2PCa2) of sarcoplasmic reticulum Ca2+-ATPase. This is normally a transient intermediate state during phosphoenzyme isomerization from the ADP-sensitive to ADP-insensitive form and Ca2+ deocclusion/release to the lumen; E1PCa2E2PCa2E2P + 2Ca2+. Stabilization was achieved by elongation of the Glu40-Ser48 loop linking the Actuator domain and M1 (1st transmembrane helix) with four glycine insertions at Gly46/Lys47 and by binding of beryllium fluoride (BeFx) to the phosphorylation site of the Ca2+-bound ATPase (E1Ca2). The complex E2Ca2·BeF3 was also produced by lumenal Ca2+ binding to E2·BeF3 (E2P ground state analog) of the elongated linker mutant. The complex was stable for at least 1 week at 25 °C. Only BeFx, but not AlFx or MgFx, produced the E2PCa2 structural analog. Complex formation required binding of Mg2+, Mn2+, or Ca2+ at the catalytic Mg2+ site. Results reveal that the phosphorylation product E1PCa2 and the E2P ground state (but not the transition states) become competent to produce the E2PCa2 transient state during forward and reverse phosphoenzyme isomerization. Thus, isomerization and lumenal Ca2+ release processes are strictly coupled with the formation of the acylphosphate covalent bond at the catalytic site. Results also demonstrate the critical structural roles of the Glu40-Ser48 linker and of Mg2+ at the catalytic site in these processes.  相似文献   

7.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

8.
In order to examine the regulatory role of thyroid hormone on sarcolemmal Ca2+-channels, Na+–Ca2+ exchange and Ca2+-pump as well as heart function, the effects of hypothyroidism and hyperthyroidism on rat heart performance and sarcolemmal Ca2+-handling were studied. Hyperthyroid rats showed higher values for heart rate (HR), maximal rates of ventricular pressure development+(dP/dt)max and pressure fall–(dP/dt)max, but shorter time to peak ventricular pressure (TPVP) and contraction time (CT) when compared with euthyroid rats. The left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP), as well as aortic systolic and diastolic pressures (ASP and ADP, respectively) were not significantly altered. Hypothyroid rats exhibited decreased values of LVSP, HR, ASP, ADP, +(dP/dt)max and –(dP/dt)max but higher CT when compared with euthyroid rats; the values of LVEDP and TPVP were not changed. Studies with isolated-perfused hearts showed that while hypothyroidism did not modulate the inotropic response to extracellular Ca2+ and Ca2+ channel blocker verapamil, hyperthyroidism increased sensitivity to Ca2+ and decreased sensitivity to verapamil in comparison to euthyroid hearts. Studies of [3H]-nitrendipine binding with purified cardiac sarcolemmal membrane revealed decreased number of high affinity binding sites (Bmax) without any change in the dissociation constant for receptor-ligand complex (Kd) in the hyperthyroid group when compared with euthyroid sarcolemma; hypothyroidism had no effect on these parameters. The activities of sarcolemmal Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake and ouabain-sensitive Na+–K+ ATPase were decreased whereas the Mg2+-ATPase activity was increased in hypothyroid hearts. On the other hand, sarcolemmal membranes from hyperthyroid samples exhibited increased ouabain-sensitive Na+–K+ ATPase activity, whereas Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake, and Mg2+-ATPase activities were unchanged. The Vmax and Ka for Ca2+ of cardiac sarcolemmal Na+–Ca2+ exchange were not altered in both hyperthyroid and hypothyroid states. These results indicate that the status of sarcolemmal Ca2+-transport processes is regulated by thyroid hormones and the modification of Ca2+-fluxes across the sarcolemmal membrane may play a crucial role in the development of thyroid state-dependent contractile changes in the heart.  相似文献   

9.
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a.  相似文献   

10.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

11.
Dimethylsulfoxide [Me2SO, 30% (v/v)] promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1-ATPase. The effects of this solvent on the interaction of beef-heart mitochondrial F1 with the immobilized ATP of Agarose-hexane-ATP were studied. In the presence of Me2SO, F1 bound less readily to the immobilized ATP, but once bound was more difficult to elute with exogenous ATP. This suggests that not only was the binding affinity for adenine nucleotide at the first binding site affected but that adenine nucleotide binding affinity at the second and/or third sites, which interact cooperatively with the first site to release bound nucleotide, was also affected. A reduction in the binding of [3H]ADP to these sites was shown. A change in the conformation of F1 in 30% (v/v) Me2SO was demonstrated by crosslinking and by the increased resistance of the enzyme to cold denaturation.  相似文献   

12.
Eeva-Liisa Karjalainen  Andreas Barth 《BBA》2007,1767(11):1310-1318
The sarcoplasmic reticulum Ca2+-ATPase (SERCA1a) pumps Ca2+ and countertransport protons. Proton pathways in the Ca2+ bound and Ca2+-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca2+ bound state Ca2E1, one of the proposed Ca2+ entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca2+-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca2+ binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca2+ dissociation pathways. We suggest that separate proton and Ca2+ pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.  相似文献   

13.
Intracellular Ca2+ levels in Paramecium must be tightly controlled, yet little is understood about the mechanisms of control. We describe here indirect evidence that a phosphoenzyme intermediate is the calmodulin-regulated plasma membrane Ca2+ pump and that a Ca2+-ATPase activity in pellicles (the complex of cell body surface membranes) is the enzyme correlate of the plasma membrane pump protein. A change in Ca2+ pump activity has been implicated in the chemoresponse of paramecia to some attractant stimuli. Indirect support for this is demonstrated using mutants with different modifications of calmodulin to correlate defects in chemoresponse with altered Ca2+ homeostasis and pump activity.Abbreviations EGTA ethyleneglycol tetra-acetate - ER endoplasmic reticulum - IBMX isobutyl methylxanthine - I che index of chemokinesis - Mops 3-[N-morpholino] propanesulfonic acid - PEI phosphoenzyme intermediate - STEN sucrose, TRIS, EDTA, sodium chloride - TCA trichloroacetic acid - TRIS tris[hydroxymethyl] aminomethane  相似文献   

14.
The results of site-directed mutagenesis studies of the sarcoplasmic reticulum Ca2+-ATPase are reviewed. More than 250 different point mutants have been expressed in cell culture and analysed by a panel of functional assays. Thereby, 40–50 important amino acid residues have been pinpointed, and the mutants have been assigned to functional classes: the Ca2+-affinity mutants, the phosphorylation-negative mutants, the ATP-affinity mutants, the E1P mutants, the E2P mutants, and the uncoupled mutants. Moreover, regions important to the specific inhibition by thapsigargin have been identified by analysis of Ca2+-ATPase/Na+, K+-ATPase chimeric constructs.  相似文献   

15.
The plasma membrane Ca2+ ATPase catalyzed the hydrolysis of ATP in the presence of millimolar concentrations of EGTA and no added Ca2+ at a rate near 1.5% of that attained at saturating concentrations of Ca2+. Like the Ca-dependent ATPase, the Ca-independent activity was lower when the enzyme was autoinhibited, and increased when the enzyme was activated by acidic lipids or partial proteolysis. The ATP concentration dependence of the Ca2+-independent ATPase was consistent with ATP binding to the low affinity modulatory site. In this condition a small amount of hydroxylamine-sensitive phosphoenzyme was formed and rapidly decayed when chased with cold ATP. We propose that the Ca2+-independent ATP hydrolysis reflects the well known phosphatase activity which is maximal in the absence of Ca2+ and is catalyzed by E2-like forms of the enzyme. In agreement with this idea pNPP, a classic phosphatase substrate was a very effective inhibitor of the ATP hydrolysis.  相似文献   

16.
In the Ca2+-ATPase of human red cells the rate of dephosphorylation of the phosphoenzyme is increased by ADP, provided Ca2+ is present. This effect suggests that phosphorylation of the Ca2+-ATPase is a reversible process.  相似文献   

17.
The monoclonal antibody to the β-subunit of H+/K+-ATPase (mAbHKβ) cross-reacts with a protein that acts as a molecular chaperone for the structural maturation of sarcoplasmic reticulum (SR) Ca2+-ATPase. We partially purified a mAbHKβ-reactive 65-kDa protein from Xenopus ovary. After in-gel digestion and peptide sequencing, the 65-kDa protein was identified as methionine aminopeptidase II (MetAP2). The effects of MetAP2 on SR Ca2+-ATPase expression were examined by injecting the cRNA for MetAP2 into Xenopus oocytes. Immunoprecipitation and pulse-chase experiments showed that MetAP2 was transiently associated with the nascent SR Ca2+-ATPase. Synthesis of functional SR Ca2+-ATPase was facilitated by MetAP2 and prevented by injecting an antibody specific for MetAP2. These results suggest that MetAP2 acts as a molecular chaperone for SR Ca2+-ATPase synthesis.  相似文献   

18.
Chemical cross-linking was used to study protein binding interactions between native phospholamban (PLB) and SERCA2a in sarcoplasmic reticulum (SR) vesicles prepared from normal and failed human hearts. Lys27 of PLB was cross-linked to the Ca2+ pump at the cytoplasmic extension of M4 (at or near Lys328) with the homobifunctional cross-linker, disuccinimidyl glutarate (7.7 Å). Cross-linking was augmented by ATP but abolished by Ca2+ or thapsigargin, confirming in native SR vesicles that PLB binds preferentially to E2 (low Ca2+ affinity conformation of the Ca2+-ATPase) stabilized by ATP. To assess the functional effects of PLB binding on SERCA2a activity, the anti-PLB antibody, 2D12, was used to disrupt the physical interactions between PLB and SERCA2a in SR vesicles. We observed a tight correlation between 2D12-induced inhibition of PLB cross-linking to SERCA2a and 2D12 stimulation of Ca2+-ATPase activity and Ca2+ transport. The results suggest that the inhibitory effect of PLB on Ca2+-ATPase activity in SR vesicles results from mutually exclusive binding of PLB and Ca2+ to the Ca2+ pump, requiring PLB dissociation for catalytic activation. Importantly, the same result was obtained with SR vesicles prepared from normal and failed human hearts; therefore, we conclude that PLB binding interactions with the Ca2+ pump are largely unchanged in failing myocardium.  相似文献   

19.
As a stable analog for ADP-sensitive phosphorylated intermediate of sarcoplasmic reticulum Ca2+-ATPase E1PCa2·Mg, a complex of E1Ca2·BeFx, was successfully developed by addition of beryllium fluoride and Mg2+ to the Ca2+-bound state, E1Ca2. In E1Ca2·BeFx, most probably E1Ca2·BeF3, two Ca2+ are occluded at high affinity transport sites, its formation required Mg2+ binding at the catalytic site, and ADP decomposed it to E1Ca2, as in E1PCa2·Mg. Organization of cytoplasmic domains in E1Ca2·BeFx was revealed to be intermediate between those in E1Ca2·AlF4 ADP (transition state of E1PCa2 formation) and E2·BeF3·(ADP-insensitive phosphorylated intermediate E2P·Mg). Trinitrophenyl-AMP (TNP-AMP) formed a very fluorescent (superfluorescent) complex with E1Ca2·BeFx in contrast to no superfluorescence of TNP-AMP bound to E1Ca2·AlFx. E1Ca2·BeFx with bound TNP-AMP slowly decayed to E1Ca2, being distinct from the superfluorescent complex of TNP-AMP with E2·BeF3, which was stable. Tryptophan fluorescence revealed that the transmembrane structure of E1Ca2·BeFx mimics E1PCa2·Mg, and between those of E1Ca2·AlF4·ADP and E2·BeF3. E1Ca2·BeFx at low 50–100 μm Ca2+ was converted slowly to E2·BeF3 releasing Ca2+, mimicking E1PCa2·Mg → E2P·Mg + 2Ca2+. Ca2+ replacement of Mg2+ at the catalytic site at approximately millimolar high Ca2+ decomposed E1Ca2·BeFx to E1Ca2. Notably, E1Ca2·BeFx was perfectly stabilized for at least 12 days by 0.7 mm lumenal Ca2+ with 15 mm Mg2+. Also, stable E1Ca2·BeFx was produced from E2·BeF3 at 0.7 mm lumenal Ca2+ by binding two Ca2+ to lumenally oriented low affinity transport sites, as mimicking the reverse conversion E2P· Mg + 2Ca2+E1PCa2·Mg.Sarcoplasmic reticulum Ca2+-ATPase (SERCA1a),2 a representative member of the P-type ion transporting ATPases, catalyze Ca2+ transport coupled with ATP hydrolysis (Fig. 1) (19). The enzyme forms phosphorylated intermediates from ATP or Pi in the presence of Mg2+ (1013). In the transport cycle, the enzyme is first activated by cooperative binding of two Ca2+ ions at high affinity transport sites (E2 to E1Ca2, steps 1–2) (14) and autophosphorylated at Asp351 with MgATP to form the ADP-sensitive phosphoenzyme (E1P, step 3), which reacts with ADP to regenerate ATP in the reverse reaction. Upon this E1P formation, the two bound Ca2+ are occluded in the transport sites (E1PCa2). Subsequent isomeric transition to the ADP-insensitive form (E2PCa2), i.e. loss of ADP sensitivity at the catalytic site, results in rearrangement of the Ca2+ binding sites to deocclude Ca2+, reduce the affinity, and open the lumenal gate, thus releasing Ca2+ into the lumen (E2P, steps 4–5). Finally Asp351-acylphosphate in E2P is hydrolyzed to form the Ca2+-unbound inactive E2 state (steps 6 and 7). Mg2+ bound at the catalytic site is required as a physiological catalytic cofactor in phosphorylation and dephosphorylation and thus for the transport cycle. The cycle is totally reversible, e.g. E2P can be formed from Pi in the presence of Mg2+ and absence of Ca2+, and subsequent Ca2+ binding at lumenally oriented low affinity transport sites of E2P reverses the Ca2+-releasing step and produces E1PCa2, which is then decomposed to E1Ca2 by ADP.Open in a separate windowFIGURE 1.Ca2+ transport cycle of Ca2+-ATPase.Various intermediate structural states in the transport cycle were fixed as their structural analogs produced by appropriate ligands such as AMP-PCP (non-hydrolyzable ATP analog) or metal fluoride compounds (phosphate analogs), and their crystal structures were solved at the atomic level (1522). The three cytoplasmic domains, N, P, and A, largely move and change their organization state during the transport cycle, and the changes are coupled with changes in the transport sites. Most remarkably, in the change from E1Ca2·AlF4·ADP (the transition state for E1PCa2 formation, E1PCa2·ADP·Mg) to E2·BeF3 (the ground state E2P·Mg) (2325), the A domain largely rotates by more than 90° approximately parallel to the membrane plane and associates with the P domain, thereby destroying the Ca2+ binding sites, and opening the lumenal gate, thus releasing Ca2+ into the lumen (see Fig. 2). E1PCa2·Ca·AMP-PN formed by CaAMP-PNP without Mg2+ is nearly the same as E1Ca2·AlF4·ADP and E1Ca2·CaAMP-PCP in their crystal structures (17, 18, 22).Open in a separate windowFIGURE 2.Structure of SERCA1a and its change during processing of phosphorylated intermediate. E1Ca2·AlF4·ADP (the transition state analog for phosphorylation E1PCa2·ADP·Mg) and E2·BeF3 (the ground state E2P analog (25)) were obtained from the Protein Data Bank (PDB accession code 1T5T (17) and 2ZBE (21), respectively). Cytoplasmic domains N (nucleotide binding), P (phosphorylation), and A (actuator), and 10 transmembrane helices (M1–M10) are indicated. The arrows on the domains, M1′ and M2 (Tyr122) in E1Ca2·AlF4·ADP, indicate their approximate motions predicted for E1PCa2·ADP·MgE2P·Mg. The phosphorylation site Asp351, TGES184 of the A domain, Arg198 (tryptic T2 site) on the Val200 loop (DPR198AV200NQD) of the A domain, and Thr242 (proteinase K site) on the A/M3-linker are shown. Seven hydrophobic residues gather in the E2P state to form the Tyr122-hydrophobic cluster (Y122-HC); Tyr122/Leu119 on the top part of M2, Ile179/Leu180/Ile232 of the A domain, and Val705/Val726 of the P domain. The overall structure of E1Ca2·AlF4·ADP is virtually the same as those of E1Ca2·CaAMP-PCP and E1PCa2·Ca·AMP-PN (17, 18, 22).Despite these atomic structures, yet unsolved is the structure of E1PCa2·Mg, the genuine physiological intermediate E1PCa2 with bound Mg2+ at the catalytic site without the nucleotide. Its stable structural analog has yet to be developed. E1PCa2·Mg is the major intermediate accumulating almost exclusively at steady state under physiological conditions. Its rate-limiting isomerization results in Ca2+ deocclusion/release producing E2P·Mg as a key event for Ca2+ transport. In E1Ca2·CaAMP-PCP, E1Ca2·AlF4·ADP, and E1PCa2·Ca·AMP-PN, the N and P domains are cross-linked and strongly stabilized by the bound nucleotide and/or Ca2+ at the catalytic site, thus they are crystallized (17, 18, 22). Kinetically, E1PCa2·Ca formed with CaATP is markedly stabilized due to Ca2+ binding at the catalytic Mg2+ site, and its isomerization to E2P is strongly retarded in contrast to E1PCa2·Mg (26, 27). Thus, the bound Ca2+ at the catalytic Mg2+ site likely produces a significantly different structural state from that with bound Mg2+.Therefore, it is now essential to develop a genuine E1PCa2·Mg analog without bound nucleotide and thereby gain further insight into the structural mechanism in the Ca2+ transport process. It is also crucial to further clarify the structural importance of Mg2+ as the physiological catalytic cation. In this study, we successfully developed the complex E1Ca2·BeFx, most probably E1Ca2·BeF3, as the E1PCa2·Mg analog by adding beryllium fluoride (BeFx) to the E1Ca2 state without any nucleotides. For its formation, Mg2+ binding at the catalytic site was required and Ca2+ substitution for Mg2+ was absolutely unfavorable, revealing a likely structural reason for its preference as the physiological cofactor. In E1Ca2·BeF3, two Ca2+ ions bound at the high affinity transport sites are occluded. It was also produced from E2·BeF3 by lumenal Ca2+ binding at the lumenally oriented low affinity transport sites, mimicking E2P·Mg + 2Ca2+E1PCa2·Mg. All properties of the newly developed E1Ca2·BeF3 fulfilled the requirements as the E1PCa2·Mg analog, and hence we were able to uncover the hitherto unknown nature of E1PCa2·Mg as well as structural events occurring in the phosphorylation and isomerization processes. Also, we successfully found the conditions that perfectly stabilize the E1Ca2·BeF3 complex.  相似文献   

20.
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644-1670 bound with a Kd ~ 1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号