首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichlorophenols are weak acids of high hydrophobicity and are able to transport protons across the mitochondrial membrane. Thus the proton motive force is dissipated and the ATP production decreased. In situ Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR) experiments with 2,4,5-trichlorophenol (TCP) adsorbed to model membranes resulted in good evidence for the formation of the TCP-heterodimer. Two surfaces were examined: a dipalmitoyl phosphatidic acid (DPPA) monolayer and a planar DPPA/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer. TCP was adsorbed from 1 to 3 mM solutions at pH 6.0 to the lipid layers leading to surface layers at the water/lipid interface. Difference spectra showed an effect on DPPA acyl chains even when it was covered with POPC. Time-resolved measurements revealed two distinct adsorption processes, which were assigned to TCP and its deprotonated anion (phenoxide), respectively. For DPPA/POPC bilayers, the adsorption of TCP was faster than that of its phenoxide, whereas adsorption of both species to DPPA monolayers proceeded with similar velocity. In both cases, phenoxide formation at the membrane was found to be delayed with respect to phenol adsorption. Phenoxide and phenol were retained after replacing the TCP solution with buffer. For the retained species, we estimated a phenol/phenoxide molar ratio of 1 at pH 6.0 (pKa=6.94 for TCP), demonstrating strong evidence for heterodimer formation.  相似文献   

2.
The interaction of anthracyclines (daunorubicin and idarubicin) with monolayers of zwitterionic palmitoyloleoylphosphatidylcholine (POPC) and anionic dipalmitoylphosphatidic acid (POPC-DPPA 80-20 mol%) was studied by surface pressure measurements and compared with previous results obtained with other anthracyclines (pirarubicin and adriamycin). These anthracycline/phospholipid monolayers were next transferred by a Langmuir-Blodgett technique onto planar supports and studied by surface-enhanced resonance Raman scattering (SERRS), which gave information about the orientation of anthracycline in the monolayers. On the whole, the adsorption of anthracyclines in zwitterionic monolayers increases with the anthracycline hydrophobic/hydrophilic balance, which underlines the role of the hydrophobic component of the interaction. On the contrary, the anthracyclines remain adsorbed on the polar headgroups of the phospholipids in the presence of DPPA and form a screen that limits a deeper penetration of other anthracycline molecules. To study by SERRS measurements the crossing of pirarubicin through a phospholipid bilayer used as a membrane model, asymmetrical POPC-DPPA/POPC or POPC/POPC-DPPA bilayers were transferred by the Langmuir-Schäfer method, thanks to a laboratory-built set-up, and put in contact with a pirarubicin aqueous solution. It has been shown that the presence of anionic DPPA in the first monolayer in contact with pirarubicin would limit its crossing. This limiting effet is not observed if the first monolayer is zwitterionic.  相似文献   

3.
A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde concentration in the outer monolayer.  相似文献   

4.
The activity of phospholipase C from Clostridium perfringens on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as a monolayer at an air/water interface was examined. With a pure POPC monolayer, sharp cut-off of the enzyme activity was observed on increase in surface pressure. However, this cut-off disappeared on addition of a 0.3 molar fraction of 1,2-dioleoylglycerol (1,2-DO) to the monolayer. An abrupt change in the enzyme activity was observed with molar fractions of between 0.2 and 0.3 1,2-DO in the POPC monolayer at an initial surface pressure of 35 mN/m. For examination of the effect of 1,2-DO on the phospholipase C activity, the quantity of [125I]phospholipase C adsorbed to the surface was determined. The enzyme was found to be adsorbed nonspecifically to all lipid films except that of POPC only. The adsorption of enzyme was not affected by the presence or absence of Ca2+ and Zn2+. The rate constant for enzyme adsorption to a 1,2-DO film was 4.5 times that for its adsorption to a POPC film. The adsorption decreased linearly with increase in the surface concentration of POPC, and increased with increase in the surface concentration of 1,2-DO. These data suggest that 1,2-DO (a reaction product) regulates the interaction of phospholipase C with films containing substrate and may also regulate the enzyme activity.  相似文献   

5.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an α-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The 31P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC35 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.  相似文献   

6.
Apolipoprotein A-I (ApoA-I) is the principle protein component of HDL, also known as “good cholesterol,” which is an inverse marker for cardiovascular disease. The N-terminal 44 amino acids of ApoA-I (N44) are predicted to be responsible for stabilization of soluble ApoA-I, whereas the C-terminal 46 amino acids (C46) are predicted to initiate lipid binding and oligomerization. In this work, we apply what we believe to be a novel application of drop tensiometry to study the adsorption and desorption of N44 and C46 at a triolein/POPC/water (TO/POPC/W) interface. The amount of peptide that adsorbed to the surface was dependent on the surface concentration of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and pressure (Π) before adsorption. At a TO/POPC/W interface, the exclusion pressure (ΠEX) of C46 was 25.8 mN/m, and was 19.3 mN/m for N44. Once adsorbed, both peptides formed a homogeneous surface with POPC but were progressively ejected from the surface by compression. During a compression, C46 removed POPC from the surface whereas N44 did not. Repeated compressions caused C46 to deplete entirely the surface of phospholipid. If full-length ApoA-I could also remove phospholipid, this could provide a mechanism for the transfer of surface components of chylomicrons and very low density lipoprotein to high density lipoprotein with the assistance of phospholipid transfer protein.  相似文献   

7.
Dendrimers are individual macromolecular compounds having a great potential for biomedical application. The key step of the cell penetration by dendrimers is the interaction with lipid bilayer. Here, the interaction between cationic pyridylphenylene dendrimer of third generation (D350+) and multicomponent liquid (CL/POPC), solid (CL/DPPC) and cholesterol-containing (CL/POPC/30% Chol) anionic liposomes was investigated by dynamic light scattering, fluorescence spectroscopy, conductometry, calorimetric studies and molecular dynamic (MD) simulations. Microelectrophoresis and MD simulations revealed the interaction is electrostatic and reversible with only part of pyridinium groups of dendrimers involved in binding with liposomes. The ability of dendrimer molecules to migrate between liposomes was discovered by the labeling liposomes with Rhodamine B. The phase state of the lipid membrane and the incorporation of cholesterol into the lipid bilayer were found to not affect the mechanism of the dendrimer - liposome complex formation. Rigid dendrimer adsorption on liposomal surface does not induce the formation of significant defects in the lipid membrane pave the way for possible biological application of pyridylphenylene dendrimers.  相似文献   

8.
This paper describes the mechanisms of adsorption of chitosan, a positively charged polyelectrolyte, on the DOPC lipid membrane of large and giant unilamellar vesicles (respectively, LUVs and GUVs). We observe that the variation of the zeta potential of LUVs as a function of chitosan concentration is independent on the chitosan molecular weight (Mw). This result is interpreted in terms of electrostatic interactions, which induce a flat adsorption of the chitosan on the surface of the membrane. The role of electrostatic interactions is further studied by observing the variation of the zeta potential as a function of the chitosan concentration for two different charge densities tuned by the pH. Results show a stronger chitosan-membrane affinity at pH 6 (lipids are negatively charged, and 40% chitosan amino groups are protonated) than at pH 3.4 (100% of protonated amino groups but zwitterionic lipids are positively charged) which confirms that adsorption is of electrostatic origin. Then, we investigate the stability of decorated LUVs and GUVs in a large range of pH (6.0 < pH < 12.0) in order to complete a previous study made in acidic conditions [Quemeneur et al. Biomacromolecules 2007, 8, 2512-2519]. A comparative study of the variation of the zeta potential as a function of the pH (2.0 < pH < 12.0) reveals a difference in behavior between naked and chitosan-decorated LUVs. This result is further confirmed by a comparative observation by optical microscopy of naked and chitosan-decorated GUVs in basic conditions (6.0 < pH < 12.0): at pH > 10.0, in the absence of chitosan, the vesicles present complex shapes, contrary to the chitosan-decorated vesicles which remain spherical, confirming thus that chitosan remains adsorbed on vesicles in basic conditions up to pH = 12.0. These results, in addition with our previous data, show that the chitosan-decorated vesicles are stable over a very broad range of pH (2.0 < pH < 12.0), which holds promise for their in vivo applications. Finally, the quantification of the chitosan adsorption on a LUV membrane is performed by zeta potential and fluorescence measurements. The fraction of membrane surface covered by chitosan is estimated to be lower than 40 %, which corresponds to the formation of a flat layer of chitosan on the membrane surface on an electrostatic basis.  相似文献   

9.
Long chain spin labels with the nitroxide group located near the terminal methyl of the chain were used to determine the percentage interdigitated lipid in complexes of polymyxin B (PMB) and polymyxin B nonapeptide (PMBN) with the acidic lipids dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidic acid (DPPA) at varying mole ratios of drug to lipid and at different pH values. These spin labels are more motionally restricted in the interdigitated than in the non-interdigitated gel phase bilayer. This allows determination of the percentage interdigitated lipid by resolution of the spectrum into motionally restricted and more mobile components. At nonsaturating concentrations of PMB, significantly more DPPG than that which can be maximally PMB-bound, becomes interdigitated. As the temperature approaches the gel to liquid crystalline phase transition temperature, the bilayer becomes progressively non-interdigitated. The ESR spectrum indicates that PMB also causes interdigitation of DPPA. However, in contrast to DPPG, the amount of DPPA which is interdigitated at pH 6, is less than the amount which is expected to be PMB-bound. This is attributed to the ability of DPPA to participate in lateral interlipid hydrogen bonding interactions. Such lateral interactions would be abolished in the interdigitated bilayer and thus they are expected to inhibit its formation. At pH 9, where the interlipid interactions of DPPA are weakened, PMB induces even more lipid than that which is PMB-bound to become interdigitated. Indeed, the percentage interdigitated lipid is even greater than found for DPPG. This may be partly a result of the greater negative charge of DPPA at this pH. A greater repulsive negative charge is expected to favor interdigitation. PMBN is less effective than PMB at inducing interdigitation of DPPG and causes little or no interdigitation of DPPA at pH 6, even at saturating concentrations. PMBN also does not lower the phase transition temperature of DPPA at pH 6 as much as PMB. At pH 9, the effect of PMBN on DPPA is more similar to the effect of PMB. However, even for DPPG, and DPPA at pH 9, PMBN does not maintain interdigitation of the lipids at higher temperatures as effectively as PMB. PMBN's smaller perturbing effect and greatly decreased ability to cause interdigitation of DPPA at pH values below 9 may be related to a decreased ability to cause lateral separation of the lipid molecules, which is necessary in order to weaken the interlipid interactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
BackgroundUnderstanding the effects of graphene-based nanomaterials on lipid membranes is critical to determine their environmental impact and their efficiency in the biomedical context. Graphene has been reported to favourably interact with biological and model lipid membranes.MethodsWe report on a systematic coarse-grained molecular dynamics study of the interaction modes of graphene nanometric flakes with POPC/cholesterol liposome membranes. We have simulated graphene layers with a variety of sizes and oxidation degrees, and we have analyzed the trajectories, the interaction modes, and the energetics of the observed phenomena.ResultsThree interaction modes are reported. Graphene can be transiently adsorbed onto the liposome membrane and/or inserted in its hydrophobic region. Inserted nanosheets prefer a perpendicular orientation, and tilt in order to maximize the contact with phospholipid tails while avoiding the contact with cholesterol molecules. When placed between two liposomes, graphene facilitates their fusion in a single vesicle.ConclusionsGraphene can be temporary adsorbed on the liposome before insertion. Bilayer curvature has an influence on the orientation of inserted graphene particles. Cholesterol molecules are depleted from the surrounding of graphene particles. Graphene layers may catalyse membrane fusion by bypassing the energy barrier required in stalk formation.General significanceNanometric graphene layers can be adsorbed/inserted in lipid-based membranes in different manners and affect the cholesterol distribution in the membrane, implying important consequences on the structure and functionality of biological cell membranes, and on the bioaccumulation of graphene in living organisms. The graphene-mediated mechanism opens new possibilities for vesicle fusion in the experimental context.  相似文献   

11.
Some lipid mixtures form membranes containing submicroscopic (nanodomain) ordered lipid domains (rafts). Some of these nanodomains are so small (radius <5 nm) that they cannot be readily detected with Förster resonance energy transfer (FRET)-labeled lipid pairs with large Ro. We define such domains as ultrananodomains. We studied the effect of lipid structure/composition on the formation of ultrananodomains in lipid vesicles using a dual-FRET-pair approach in which only one FRET pair had Ro values that were sufficiently small to detect the ultrananodomains. Using this approach, we measured the temperature dependence of domain and ultrananodomain formation for vesicles composed of various mixtures containing a high-Tm lipid (brain sphingomyelin (SM)) or dipalmitoyl phosphatidylcholine (DPPC)), low-Tm lipid (dioleoylphosphatidylcholine (DOPC) or 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC)), and a lower (28 mol %) or higher (38 mol %) cholesterol concentration. For every lipid combination tested, the thermal stabilities of the ordered domains were similar, in agreement with our prior studies. However, the range of temperatures over which ultrananodomains formed was highly lipid-type dependent. Overall, vesicles that were closest to mammalian plasma membrane in lipid composition (i.e., with brain SM, POPC, and/or higher cholesterol) formed ultrananodomains in preference to larger domains over the widest temperature range. Relative to DPPC, the favorable effect of SM on ultrananodomain formation versus larger domains was especially large. In addition, the favorable effect of a high cholesterol concentration, and of POPC versus DOPC, on the formation of ultrananodomains versus larger domains was greater in vesicles containing SM than in those containing DPPC. We speculate that it is likely that natural mammalian lipids are tuned to maximize the tendency to form ultrananodomains relative to larger domains. The observation that domain size is more sensitive than domain formation to membrane composition has implications for how membrane domain properties may be regulated in vivo.  相似文献   

12.
Antimicrobial peptides (AMPs) have attracted much interest in recent years because of their potential use as new-generation antibiotics. Indolicidin (IL) is a 13-residue cationic AMP that is effective against a broad spectrum of bacteria, fungi, and even viruses. Unfortunately, its high hemolytic activity retards its clinical applications. In this study, we adopted molecular dynamics (MD) simulations as an aid toward the rational design of IL analogues exhibiting high antimicrobial activity but low hemolysis. We employed long-timescale, multi-trajectory all-atom MD simulations to investigate the interactions of the peptide IL with model membranes. The lipid bilayer formed by the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was chosen as the model erythrocyte membrane; lipid bilayers formed from a mixture of POPC and the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol were chosen to model bacterial membranes. MD simulations with a total simulation time of up to 4 μs revealed the mechanisms of the processes of IL adsorption onto and insertion into the membranes. The packing order of these lipid bilayers presumably correlated to the membrane stability upon IL adsorption and insertion. We used the degree of local membrane thinning and the reduction in the order parameter of the acyl chains of the lipids to characterize the membrane stability. The order of the mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol/POPC lipid bilayer reduced significantly upon the adsorption of IL. On the other hand, although the order of the pure-POPC lipid bilayer was perturbed slightly during the adsorption stage, the value was reduced more dramatically upon the insertion of IL into the membrane's hydrophobic region. The results imply that enhancing IL adsorption on the microbial membrane may amplify its antimicrobial activity, while the degree of hemolysis may be reduced through inhibition of IL insertion into the hydrophobic region of the erythrocyte membrane. In addition, through simulations, we identified the amino acids that are most responsible for the adsorption onto or insertion into the two model membranes. Positive charges are critical to the peptide's adsorption, whereas the presence of hydrophobic Trp8 and Trp9 leads to its deeper insertion. Combining the hypothetical relationships between the membrane disordering and the antimicrobial and hemolytical activities with the simulated results, we designed three new IL-analogous peptides: IL-K7 (Pro7 → Lys), IL-F89 (Trp8 and Trp9 → Phe), and IL-K7F89 (Pro7 → Lys; Trp8 and Trp9 → Phe). The hemolytic activity of IL-F89 is considerably lower than that of IL, whereas the antimicrobial activity of IL-K7 is greatly enhanced. In particular, the de novo peptide IL-K7F89 exhibits higher antimicrobial activity against Escherichia coli; its hemolytic activity decreased to only 10% of that of IL. Our simulated and experimental results correlated well. This approach—coupling MD simulations with experimental design—is a useful strategy toward the rational design of AMPs for potential therapeutic use.  相似文献   

13.
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule.  相似文献   

14.
Misfolding and aggregation of cellular prion protein (PrPc) is a major molecular process involved in the pathogenesis of prion diseases. Here, we studied the aggregation properties of a prion fragment peptide PrP(106–128). The results show that the peptide aggregates in a concentration-dependent manner in an aqueous solution and that the aggregation is sensitive to pH and the preformed amyloid seeds. Furthermore, we show that the zwitterionic POPC liposomes moderately inhibit the aggregation of PrP(106–128), whereas POPC/cholesterol (8:2) vesicles facilitate peptide aggregation likely due to the increase of the lipid packing order and membrane rigidity in the presence of cholesterol. In addition, anionic lipid vesicles of POPG and POPG/cholesterol above a certain concentration accelerate the aggregation of the peptide remarkably. The strong electrostatic interactions between the N-terminal region of the peptide and POPG may constrain the conformational plasticity of the peptide, preventing insertion of the peptide into the inner side of the membrane and thus promoting fibrillation on the membrane surface. The results suggest that the charge properties of the membrane, the composition of the liposomes, and the rigidity of lipid packing are critical in determining peptide adsorption on the membrane surface and the efficiency of the membrane in catalyzing peptide oligomeric nucleation and amyloid formation. The peptide could be used as an improved model molecule to investigate the mechanistic role of the crucial regions of PrP in aggregation in a membrane-rich environment and to screen effective inhibitors to block key interactions between these regions and membranes for preventing PrP aggregation.  相似文献   

15.
To investigate the mechanism of interaction of gramicidin S-like antimicrobial peptides with biological membranes, a series of five decameric cyclic cationic β-sheet-β-turn peptides with all possible combinations of aromatic D-amino acids, Cyclo(Val-Lys-Leu-D-Ar1-Pro-Val-Lys-Leu-D-Ar2-Pro) (Ar ≡ Phe, Tyr, Trp), were synthesized. Conformations of these cyclic peptides were comparable in aqueous solutions and lipid vesicles. Isothermal titration calorimetry measurements revealed entropy-driven binding of cyclic peptides to POPC and POPE/POPG lipid vesicles. Binding of peptides to both vesicle systems was endothermic—exceptions were peptides containing the Trp-Trp and Tyr-Trp pairs with exothermic binding to POPC vesicles. Application of one- and two-site binding (partitioning) models to binding isotherms of exothermic and endothermic binding processes, respectively, resulted in determination of peptide-lipid membrane binding constants (Kb). The Kb1 and Kb2 values for endothermic two-step binding processes corresponded to high and low binding affinities (Kb1 ≥ 100 Kb2). Conformational change of cyclic peptides in transferring from buffer to lipid bilayer surfaces was estimated using fluorescence resonance energy transfer between the Tyr-Trp pair in one of the peptide constructs. The cyclic peptide conformation expands upon adsorption on lipid bilayer surface and interacts more deeply with the outer monolayer causing bilayer deformation, which may lead to formation of nonspecific transient peptide-lipid porelike zones causing membrane lysis.  相似文献   

16.
《Biophysical journal》2022,121(7):1143-1155
Lactosylceramide (LacCer) in the plasma membranes of immune cells is an important lipid for signaling in innate immunity through the formation of LacCer-rich domains together with cholesterol (Cho). However, the properties of the LacCer domains formed in multicomponent membranes remain unclear. In this study, we examined the properties of the LacCer domains formed in Cho-containing 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) membranes by deuterium solid-state NMR and fluorescence lifetimes. The potent affinity of LacCer-LacCer (homophilic interaction) is known to induce a thermally stable gel phase in the unitary LacCer bilayer. In LacCer/Cho binary membranes, Cho gradually destabilized the LacCer gel phase to form the liquid-ordered phase by its potent order effect. In the LacCer/POPC binary systems without Cho, the 2H NMR spectra of 10′,10′-d2-LacCer and 18′,18′,18′-d3-LacCer probes revealed that LacCer was poorly miscible with POPC in the membranes and formed stable gel phases without being distributed in the liquid crystalline domain. The lamellar structure of the LacCer/POPC membrane was gradually disrupted at around 60°C, whereas the addition of Cho increased the thermal stability of the lamellarity. Furthermore, the area of the LacCer gel phase and its chain order were decreased in the LacCer/POPC/Cho ternary membranes, whereas the liquid-ordered domain, which was observed in the LacCer/Cho binary membrane, was not observed. Cho surrounding the LacCer gel domain liberated LacCer and facilitated forming the submicron to nano-scale small domains in the liquid crystalline domain of the LacCer/POPC/Cho membranes, as revealed by the fluorescence lifetimes of trans-parinaric acid and trans-parinaric acid-LacCer. Our findings on the membrane properties of the LacCer domains, particularly in the presence of Cho, would help elucidate the properties of the LacCer domains in biological membranes.  相似文献   

17.
The present work analyzes the potential use of white-rot fungi (WRF) and hematin for phenol and aniline polymerization, as a low-cost alternative to horseradish peroxidase (HRPC). The objective is to evaluate the capability of these catalysts to produce tailor-made aniline as well as to eliminate phenols by precipitation from aqueous solution. 4-Aminoantypirine (4AAP) was used to test phenoxide formation by crude protein preparations of white-rot fungi at selected conditions. The crude extracts of Pleurotus sajor-caju (PSC) were selected because of the promising values obtained for the phenoxide formation rate. HRPC/H2O2 and P. sajor-caju derived enzymes/H2O2 (PSC/H2O2) systems produced soluble polyaniline in the presence of polystyrene sulphonated (PES), with high aniline conversions at 45 °C. For the case of insoluble polyphenol production, the PSC-derived enzymes, in absence of hydrogen peroxide, produced insoluble polyphenol with similar efficiencies as those found with HRPC or hematin in a one step phenol treatment (near 40% phenol conversion). For the aniline process, at least 75% aniline conversion was obtained when using PSC enzymes at room temperature. After long reaction times, the lignin-modifying enzymes derived from PSC only produced a conductive form of polyaniline (PANI) at lower temperatures than those required when employing HRPC. Fungal enzymes look promising for eliminating aniline/phenol from wastewaters since the obtained results demonstrated that they are able to polymerizate and precipitate them from aqueous solutions.  相似文献   

18.
Soybean seed coat peroxidase (SBP; EC 1.11.1.7) was immobilised on its natural support, soybean seed coats, anticipating its use in phenol removal. Periodate and glutaraldehyde chemistries were assayed. Periodate failed to immobilise any SBP, whereas glutaraldehyde was effective. The optimum concentration of glutaraldehyde was found to be 1%. Immobilisation shifted the optimum pH for phenol removal from 4.0 to 6.0. Treated seed coat retained its activity over a 4-week period, and reusability assays showed that treated seed coats could be reused once for phenol removal. Polyethylene glycol (PEG) increased the stability of phenol degradation activity. In addition, the phenolic polymer was adsorbed on to seed coats, thus making removal of the polymeric product easier.  相似文献   

19.
Soybean seed coat peroxidase (SBP; EC 1.11.1.7) was immobilised on its natural support, soybean seed coats, anticipating its use in phenol removal. Periodate and glutaraldehyde chemistries were assayed. Periodate failed to immobilise any SBP, whereas glutaraldehyde was effective. The optimum concentration of glutaraldehyde was found to be 1%. Immobilisation shifted the optimum pH for phenol removal from 4.0 to 6.0. Treated seed coat retained its activity over a 4-week period, and reusability assays showed that treated seed coats could be reused once for phenol removal. Polyethylene glycol (PEG) increased the stability of phenol degradation activity. In addition, the phenolic polymer was adsorbed on to seed coats, thus making removal of the polymeric product easier.  相似文献   

20.
Peroxidase oxidation of phenols   总被引:1,自引:0,他引:1  
Partially purified preparations of horseradish peroxidase were able to catalyze the effective transformation of such phenol compounds as phenol, o-chlorophenol, 2,4,6-trichlorophenol, pentachlorophenol (giving rise to the formation of polymer products insoluble in water), resorcinol, and thymol (giving rise to the formation of low-molecular-weight products). The following conditions were found to be optimal for peroxidase oxidation and provide the maximum extent of elimination of phenol compounds: temperature, 15-25 and 25-30 degrees C for phenol and chlorophenol compounds, respectively; molar ratio H2O2/phenol, 1:1; and transformation time, 1-3 h. Although effective transformation was observed within a broad range of pH, the efficiency of the process slightly increased at a pH from 6.0 to 7.5. It was suggested to carry out multiple peroxidase oxidations of phenols using partially purified peroxidase enclosed in a dialysis membrane bag placed into a solution of a phenol compound containing hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号