首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a method of reductive titration of photosystem I (PSI) density in leaves by generating a known amount of electrons (e-) in photosystem II (PSII) and measuring the resulting change in optical signal as these electrons arrive at pre-oxidized PSI. The method complements a recently published method of oxidative titration of PSI donor side e- carriers P700, plastocyanin (PC) and cytochrome f by illuminating a darkened leaf with far-red light (FRL) [V. Oja, H. Eichelmann, R.B. Peterson, B. Rasulov, A. Laisk, Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves, Photosynth. Res. 78 (2003) 1-15], presenting a nondestructive way for the determination of PSI density in intact leaves. Experiments were carried out on leaves of birch (Betula pendula Roth) and several other species grown outdoors. Single-turnover flashes of different quantum dose were applied to leaves illuminated with FRL, and the FRL was shuttered off immediately after the flash. The number of e- generated in PSII by the flash was measured as four times O2 evolution following the flash. Reduction of the pre-oxidized P700 and PC was followed as a change in leaf transmittance using a dual-wavelength detector ED P700DW (810 minus 950 nm, H. Walz, Effeltrich, Germany). The ED P700DW signal was deconvoluted into P700+ and PC+ components using the abovementioned oxidative titration method. The P700+ component was related to the absolute number of e- that reduced the P700+ to calculate the extinction coefficient. The effective differential extinction coefficient of P700+ at 810-950 nm was 0.40+/-0.06 (S.D.)% of transmittance change per micromol P700+ m(-2) or 17.6+/-2.4 mM(-1) cm(-1). The result shows that the scattering medium of the leaf effectively increases the extinction coefficient by about two times and its variation (+/-14% S.D.) is mainly caused by light-scattering properties of the leaf.  相似文献   

2.
Zhang Y  Nakamura A  Kuroiwa Y  Kato Y  Watanabe T 《FEBS letters》2008,582(7):1123-1128
The redox potentials (E(composite function')) of P700 in intact and diethyl ether-treated thylakoid membranes as well as native photosystem (PS) I particles from spinach and Thermosynechococcus elongatus have been measured by a spectroelectrochemistry with an error range of +/-2-3 mV. Stepwise removal of antenna pigments by ether treatment caused distinct shifts of the E( composite function') value with increasing degree of water saturation in ether; negatively from +471 to +428 mV for spinach, but positively from +423 to +436 mV for T. elongatus. Such a contrasting behavior is discussed by invoking the mode of action of ether on the microenvironments around P700.  相似文献   

3.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

4.
Simon Hald  Dario Leister  Giles N. Johnson 《BBA》2008,1777(9):1173-1183
Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO2, non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high ΔpH to regulate photosynthesis.  相似文献   

5.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH2) through the cytochrome b6f complex (Cyt b6f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700+ and PC+ was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC+ and P700+ components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b6f to the PSI donors. A significant down-regulation of Cyt b6f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b6f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

6.
Role of thylakoid protein kinases in photosynthetic acclimation   总被引:7,自引:0,他引:7  
Rochaix JD 《FEBS letters》2007,581(15):2768-2775
Photosynthetic organisms are able to adjust to changes in light quality through state transition, a process which leads to a balancing of the light excitation energy between the antennae systems of photosystem II and photosystem I. A genetic approach has been used in Chlamydomonas with the aim of elucidating the signaling chain involved in state transitions. This has led to the identification of a small family of Ser-Thr protein kinases associated with the thylakoid membrane and conserved in algae and land plants. These kinases appear to be involved both in short and long term adaptations to changes in the light environment.  相似文献   

7.
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.  相似文献   

8.
An unusual dip (compared to higher plant behaviour under comparable light conditions) in chlorophyll fluorescence induction (FI) at about 0.2-2 s was observed for thalli of several lichen species having Trebouxia species (the most common symbiotic green algae) as their native photobionts and for Trebouxia species cultured separately in nutrient solution. This dip appears after the usual O(J)IP transient at a wide range of excitation light intensities (100-1800 μmol photons m−2 s−1). Simultaneous measurements of FI and 820-nm transmission kinetics (I820) with lichen thalli showed that the decreasing part of the fluorescence dip (0.2-0.4 s) is accompanied by a decrease of I820, i.e., by a reoxidation of electron carriers at photosystem I (PSI), while the subsequent increasing part (0.4-2 s) of the dip is not paralleled by the change in I820. These results were compared with that measured with pea leaves—representatives of higher plants. In pea, PSI started to reoxidize after 2-s excitation. The simultaneous measurements performed with thalli treated with methylviologen (MV), an efficient electron acceptor from PSI, revealed that the narrow P peak in FI of Trebouxia-possessing lichens (i.e., the I-P-dip phase) gradually disappeared with prolonged MV treatment. Thus, the P peak behaves in a similar way as in higher plants where it reflects a traffic jam of electrons induced by a transient block at the acceptor side of PSI. The increasing part of the dip in FI remained unaffected by the addition of MV. We have found that the fluorescence dip is insensitive to antimycin A, rotenone (inhibitors of cyclic electron flow around PSI), and propyl gallate (an inhibitor of plastid terminal oxidase). The 2-h treatment with 5 μM nigericin, an ionophore effectively dissipating the pH-gradient across the thylakoid membrane, did not lead to significant changes either in FI nor I820 kinetics. On the basis of the presented results, we suggest that the decreasing part of the fluorescence dip in FI of Trebouxia-lichens reflects the activation of ferredoxin-NADP+-oxidoreductase or Mehler-peroxidase reaction leading to the fast reoxidation of electron carriers in thylakoid membranes. The increasing part of the dip probably reflects a transient reduction of plastoquinone (PQ) pool that is not associated with cyclic electron flow around PSI. Possible causes of this MV-insensitive PQ reduction are discussed.  相似文献   

9.
Beth Szyszka 《BBA》2007,1767(6):789-800
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 °C and 28 °C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (ΦNPQ) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (ΦNO). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

10.
Effects of change in pH have been investigated on spinach leaf discs by measuring fluorescence induction kinetics using plant efficiency analyzer (PEA). On the basis of computational analysis of the results, we have reported that acidic pH causes a significant inhibition of the donor and the acceptor side of PS II. Energy flux models have been presented using the software Biolyzer HP 3. Effects of pH were investigated on the antenna size heterogeneity of PS II and a relative change in the proportions of α, β, and γ centers was observed.  相似文献   

11.
The correlation between membrane protein solubilisation and detergent aggregation in aqueous solution is studied for a series of n-alkyl-β-d-maltosides (CxG2 with x = 10, 11, 12 being the number of carbon atoms in the alkyl chain) using the trimeric photosystem I core complex (PSIcc) of oxygenic photosynthesis from Thermosynechococcus elongatus as model protein. While protein solubilisation is monitored via the turbidity of the solution, the aggregation behavior of the detergent is probed via the fluorescence spectrum of the polycyclic aromatic hydrocarbon pyrene. In addition, changes of the fluorescence spectrum of PSIcc in response to formation of the detergent belt surrounding its hydrophobic surface are investigated. Solubilisation of PSIcc and aggregation of detergent into micelles or belts are found to be strictly correlated. Both processes are complete at the critical solubilisation concentration (CSC) of the detergent, at which the belts are formed. The CSC depends on the concentration of the membrane protein, [prot], and is related to the critical micelle concentration (CMC) by the empirical law ln(CSC/CMC) = 0 [prot], where the constant 0 = (2.0 ± 0.3) μM−1 is independent of the alkyl chain length x. Formation of protein-free micelles below the CSC is not observed even for x = 10, where a significant excess of detergent is present at the CSC. This finding indicates an influence of PSIcc on micelle formation that is independent of the binding of detergent to the hydrophobic protein surface. The role of the CSC in the optimisation of membrane protein crystallisation is discussed.  相似文献   

12.
Masayuki Komura 《BBA》2006,1757(12):1657-1668
We performed picosecond time-resolved fluorescence spectroscopy in spinach photosystem II (PS II) particles at 4, 40, and 77 K and identified a new fluorescence band, F689. F689 was identified in addition to the well-known F685 and F695 bands in both analyses of decay-associated spectra and global Gaussian deconvolution of time-resolved spectra. Its fast decay suggests the energy transfer directly from F689 to the reaction center chlorophyll P680. The contribution of F689, which increases only at low temperature, explains the unusually broad and variable bandwidth of F695 at low temperature. Global analysis revealed the three types of excitation energy transfer/dissipation processes: (1) energy transfer from the peripheral antenna to the three core antenna bands F685, F689, and F695 with time constants of 29 and 171 ps at 77 and 4 K, respectively; (2) between the three core bands (0.18 and 0.82 ns); and (3) the decays of F689 (0.69 and 3.02 ns) and F695 (2.18 and 4.37 ns). The retardations of these energy transfer rates and the slow F689 decay rate produced the strong blue shift of the PS II fluorescence upon the cooling below 77 K.  相似文献   

13.
Cyanobacteria are significant contributors to global photosynthetic productivity, thus making it relevant to study how the different environmental stresses can alter their physiological activities. Here, we review the current research work on the response of cyanobacteria to different kinds of stress, mainly focusing on their response to metal stress as studied by using the modern proteomic tools. We also report a proteomic analysis of plastocyanin and cytochrome c6 deletion mutants of the cyanobacterium Synechocystis sp. PCC 6803 grown under copper or iron deprivation, as compared to wild-type cells, so as to get a further understanding of the metal homeostasis in cyanobacteria and their response to changing environmental conditions.  相似文献   

14.
15.
Xian-De Liu 《BBA》2005,1706(3):215-219
This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl2, an inhibitor of cytochrome b6f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b6f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.  相似文献   

16.
In this work, we summarize results of computer simulation of electron and proton transport processes coupled to ATP synthesis in chloroplasts performed within the frames of a mathematical model developed as a system of differential equations for concentrations of electron carriers and hydrogen ion inside and outside the granal and stromal thylakoids. The model takes into account topological peculiarities and lateral heterogeneity of the chloroplast lamellar system. This allowed us to analyze the influence of restricted diffusion of protons inside small compartments of a chloroplast (e.g., in the narrow inter-thylakoid gap) on electron transport processes. The model adequately describes two modes of pH-dependent feedback control of electron transport associated with: (i) the acidification of the thylakoid lumen, which causes the slowing down of plastoquinol oxidation and stimulates an increase in dissipation of excess energy in PS2, and (ii) the alkalization of stroma, inducing the activation of the BBC (Bassham-Benson-Calvin) cycle and intensified consumption of ATP and NADPH. The influence of ATP on electron transport is mediated by modulation of the thylakoid membrane conductivity to protons through the ATP synthase complexes. We also analyze the contribution of alternative electron transport pathways to the maintenance of optimal balance between the energy donating and energy consuming stages of the light-induced photosynthetic processes.  相似文献   

17.
N,N,N,N′-tetramethyl-p-phenylenediamine (TMPD) was previously used to study the kinetics of the OJIP chlorophyll fluorescence rise. The present study is an attempt to elucidate the origin of TMPD-induced delay and quenching of the I–P step of fluorescence rise. For this purpose, we analyzed the kinetics of OJIP rise in thylakoid membranes in which electron transport was modified using ascorbate, methyl viologen (MV), and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). In the absence of TMPD, the OJIP kinetics of fluorescence induction (FI) was not altered by ascorbate. However, ascorbate eliminated the I–P rise delay caused by high concentrations of TMPD. On the other hand, neither ascorbate nor DBMIB, which blocks the electron release from Photosystem II (PS II) at the cytochrome b6/f complex, could prevent the quenching of I–P rise by TMPD. In control thylakoids, MV suppressed the I–P rise of FI by about 60. This latter effect was completely removed if the electron donation to MV was blocked by DBMIB unless TMPD was present. When TMPD intercepted the linear electron flow from PS II, re-oxidation of TMPD by photosystem I (PS I) and reduction of MV fully abolished the I–P rise. The above is in agreement with the fact that TMPD can act as an electron acceptor for PS II. With MV, the active light-driven uptake of O2 during re-oxidation of TMPD by PS I contributes towards an early decline in the I–P step of the OJIP fluorescence rise.  相似文献   

18.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

19.
HvLhcb1 a major light-harvesting chlorophyll a/b-binding protein in barley, is a critical player in sustainable growth under Fe deficiency. Here, we demonstrate that Fe deficiency induces phosphorylation of HvLhcb1 proteins leading to their migration from grana stacks to stroma thylakoid membranes. HvLhcb1 remained phosphorylated even in the dark and apparently independently of state transition, which represents a mechanism for short-term acclimation. Our data suggest that the constitutive phosphorylation-triggered translocation of HvLhcb1 under Fe deficiency contributes to optimization of the excitation balance between photosystem II and photosystem I, the latter of which is a main target of Fe deficiency.  相似文献   

20.
Time-resolved fluorescence studies with a 3-ps temporal resolution were performed in order to: (1) test the recent model of the reversible primary charge separation in Photosystem I (Müller et al., 2003; Holwzwarth et al., 2005, 2006), and (2) to reconcile this model with a mechanism of excitation energy quenching by closed Photosystem I (with P700 pre-oxidized to P700+). For these purposes, we performed experiments using Photosystem I core samples isolated from Chlamydomonas reinhardtii wild type, and two mutants in which the methionine axial ligand to primary electron acceptor, A0, has been change to either histidine or serine. The temporal evolution of fluorescence spectra was recorded for each preparation under conditions where the “primary electron donor,” P700, was either neutral or chemically pre-oxidized to P700+. For all the preparations under study, and under neutral and oxidizing conditions, we observed multiexponential fluorescence decay with the major phases of ∼ 7 ps and ∼ 25 ps. The relative amplitudes and, to a minor extent the lifetimes, of these two phases were modulated by the redox state of P700 and by the mutations near A0: both pre-oxidation of P700 and mutations caused slight deceleration of the excited state decay. These results are consistent with a model in which P700 is not the primary electron donor, but rather a secondary electron donor, with the primary charge separation event occurring between the accessory chlorophyll, A, and A0. We assign the faster phase to the equilibration process between the excited state of the antenna/reaction center ensemble and the primary radical pair, and the slower phase to the secondary electron transfer reaction. The pre-oxidation of P700 shifts the equilibrium between the excited state and the primary radical pair towards the excited state. This shift is proposed to be induced by the presence of the positive charge on P700+. The same charge is proposed to be responsible for the fast A+A0 → AA0 charge recombination to the ground state and, in consequence, excitation quenching in closed reaction centers. Mutations of the A0 axial ligand shift the equilibrium in the same direction as pre-oxidation of P700 due to the up-shift of the free energy level of the state A+A0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号