首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenomenon of detergent insolubility of bovine hippocampal membranes in Triton X-100 was monitored by estimating the presence of phospholipids in the insoluble pellet. This represents a convenient and unambiguous assay and reports the dependence of the extent of phospholipid solubilization on detergent concentration. The advantage of this approach is its ability to accurately determine the extent of detergent insolubility in natural membranes. Importantly, our results show that when suboptimal concentrations of Triton X-100 are used for solubilization, interpretations of the mechanism and extent of detergent insolubility should be made with adequate caution. At concentrations of Triton X-100 that leads to no further solubilization, approximately 44% of phospholipids are left insoluble at 4 degrees C in bovine hippocampal membranes. Cholesterol depletion using methyl-beta-cyclodextrin enhanced phospholipid solubilization at low detergent concentrations but produced no significant change in the amount of insoluble phospholipids at saturating detergent concentration. Progressive solubilization by the detergent resulted in insoluble membranes that contained lipids with higher fatty acyl chain order as reported by fluorescence polarization studies using 1,6-diphenyl-1,3,5-hexatriene (DPH). These results suggest that it is the presence of such lipids rather than their association with cholesterol that determines detergent insolubility in membranes.  相似文献   

2.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

3.
The degree of detergent insolubility of cell membranes is a useful parameter to test the strength of lipid–lipid interactions relative to lipid–detergent interactions. Thus, solubility studies could give insights about lipid–lipid interactions relevant in domain formation. In this work we perform a detailed study of the solubilization of four different erythrocyte membrane systems: intact human and bovine erythrocytes, and human and bovine erythrocytes depleted in cholesterol with methyl-β-cyclodextrin. Each system was incubated with different concentrations of the non-ionic detergent Triton X-100, and the insoluble fraction was characterized by determining cholesterol and phosphorus content. A distinct solubilization behavior was obtained for the four systems, which was quantified by a “detergent resistance parameter” obtained from the fit of the solubility curves. In order to correlate these findings with membrane structural parameters, we quantify the degree of acyl chain order/rigidity of the original membranes by EPR spectroscopy, finding that detergent resistance is higher when acyl chains are more rigid. Regarding compositional properties, we found a good correlation between detergent resistance parameters and the total amount of cholesterol plus sphingomyelin in the original membranes. Our results suggest that a high degree of acyl chain packing is the determinant membrane factor for resistance to the action of Triton X-100 in erythrocytes.  相似文献   

4.
The zwitterionic detergent CHAPS, a derivative of the bile salts, is widely used in membrane protein solubilization. It is a “facial” detergent, having a hydrophilic side and a hydrophobic back. The objective of this work is to characterize the interaction of CHAPS with a cell membrane. To this aim, erythrocytes were incubated with a wide range of detergent concentrations in order to determine CHAPS partition behavior, and its effects on membrane lipid order, hemolytic effects, and the solubilization of membrane phospholipids and cholesterol. The results were compared with those obtained with the nonionic detergent Triton X-100. It was found that CHAPS has a low affinity for the erythrocyte membrane (partition coefficient K = 0.06 mM− 1), and at sub-hemolytic concentrations it causes little effect on membrane lipid order. CHAPS hemolysis and phospholipid solubilization are closely correlated. On the other side, binding of Triton X-100 disorders the membrane at all levels, and has independent mechanisms for hemolysis and solubilization. Differential behavior was observed in the solubilization of phospholipids and cholesterol. Thus, the detergent resistant membranes (DRM) obtained with the two detergents will have different composition. The behaviors of the two detergents are related to the differences in their molecular structures, suggesting that CHAPS does not penetrate the lipid bilayer but binds in a flat position on the erythrocyte surface, both in intact and cholesterol depleted erythrocytes. A relevant result for Triton X-100 is that hemolysis is not directly correlated with the solubilization of membrane lipids, as it is usually assumed.  相似文献   

5.
The insolubility of lipids in detergents is a useful method for probing the structure of biological membranes. Insolubility in detergents like Triton X-100 is observed in lipid bilayers that exist in physical states in which lipid packing is tight. The Triton X-100-insoluble lipid fraction obtained after detergent extraction of eukaryotic cells is composed of detergent-insoluble membranes rich in sphingolipids and cholesterol. These insoluble membranes appear to arise from sphingolipid- and cholesterol-rich membrane domains (rafts) in the tightly packed liquid ordered state. Because the degree of lipid insolubility depends on the stability of lipid-lipid interactions relative to lipid-detergent interactions, the quantitative relationship between rafts and detergent-insoluble membranes is complex, and can depend on lipid composition, detergent and temperature. Nevertheless, when used conservatively detergent insolubility is an invaluable tool for studying cellular rafts and characterizing their composition.  相似文献   

6.
Multilamellar liposomes containing pure phosphatidylcholine (PC) or mixtures of PC with cholesterol, cholesteryl palmitate, beta-carotene, cardiolipin, phosphatidylethanolamine or gramicidin A have been treated with the detergent Triton X-100. Solubilization has been monitored as a decrease in turbidity of the liposome suspension, and also by determination of bilayer components in the solubilized fraction. The same solubilization pattern is found for unsaturated (egg yolk) or saturated (dimyristoyl) PC. Similar results are also found when dimyristoyl PC is solubilized above or below its gel-to-fluid transition temperature. Cholesterol solubilizes in parallel with PC; gramicidin A is solubilized preferentially to this phospholipid and the non-polar lipids cholesteryl palmitate or beta-carotene remain insoluble at detergent concentrations producing complete PC solubilization. Addition of cardiolipin or phosphatidylethanolamine does not seem to alter the general pattern of PC solubilization. Phosphatidylethanolamine is less soluble than PC, while cardiolipin solubilizes at the same detergent concentrations than PC. These results are considered in relation to previous studies with natural membranes.  相似文献   

7.
Extraction of red beet root plasma membranes with the detergent Triton X-100 at a level of 2.0% (weight/volume) resulted in the depletion of over 90% of total membrane phospholipid and the reduction of glucan synthase activity by 80 to 90%. Reconstitution of the delipidated Triton X-100, 100,000g fraction in the presence of phospholipids restored glucan synthase activity. The most effective phospholipid was phosphatidyl-ethanolamine, which restored 110 to 144% of the original activity at 0.5% (weight/volume). Glucan synthase in the phospholipid-reactivated Triton X-100-treated fraction was enriched 9-fold in specific activity relative to microsomal membranes but was unstable in digitonin. These results support the hypothesis that glucan synthase activity is regulated by its phospholipid environment.  相似文献   

8.
The influence of phospholipids and Triton X-100 on the time course of chemical and enzyme-mediated reductions of a commonly used tetrazolium salt, MTT, was studied. MTT reduction was followed by the absorbance changes at 570 nm. With ascorbate as reducing agent, a 3-fold increase in the initial rates of the absorbance changes and a 24 % increase in the final absorbance values were observed in the presence of Triton X-100 micelles or phospholipid vesicles. The enzyme-mediated reduction of MTT with NADH generated by the NAD-dependent lactate dehydrogenase was also enhanced in the presence of Triton X-100, phospholipids or erythrocyte membranes. No enhancement was observed following the enzymatic generation of NADH at 340 nm in the absence of MTT. The above findings were interpreted as arising from: a) solubilization or reduced MTT in the detergent micelles or phospholipid vesicles which favors the redox reaction occurring in the aqueous fase, and b) changes in the spectral properties of reduced MTT in aqueous and lipid-like media.  相似文献   

9.
Early works have shown that when biomembranes are extracted with the non-ionic detergent Triton X-100 at 4 degrees C, only a subset of the components is solubilized. The aim of this paper was to investigate the solubilization of a cell membrane at different Triton concentrations, and to compare the lipid composition and acyl chain order/mobility of the insoluble material with those of the original membrane. We choose bovine erythrocytes, because they have an uncommon composition, as they have a huge amount of sphingomyelin and phosphatidylcholine is almost absent. We determined the degree of order/mobility of the lipid acyl chains by EPR spectroscopy, using liposoluble spin labels. Incubation of bovine erythrocytes with increasing Triton X-100 concentrations yields decreasing amounts of insoluble material which is enriched in sphingomyelin and depleted in cholesterol. Complete lipid solubilization is achieved at a detergent/lipid ratio of about 60, which is much higher than the values reported for human erythrocytes, but is in line with results obtained in model systems. An insoluble pellet is still obtained at higher Triton concentrations, which seems to consist mainly of protein. A very high correlation is found between lipid chain mobility restrictions and sphingomyelin content in the lipid structures. The human erythrocyte membrane also fits well in this correlation, suggesting a significant role of sphingomyelin in determining acyl chain organization. The analogies and differences between our insoluble material and the detergent-resistant membranes (DRM) are discussed.  相似文献   

10.
A substantial amount of the cholera toxin which binds to the surface of mouse fibroblasts resists solubilization by neutral detergents and remains associated with Triton X-100 cytoskeletons prepared by extraction of monolayer cultures. The observation is surprising given that the receptor for cholera toxin is a ganglioside (GM1), and that membrane lipids are often assumed to be quantitatively extracted from Triton X-100 cytoskeletons. Indeed such preparations from mouse fibroblasts contain GM1, and approx. 20% of the total cellular phospholipid and ganglioside. The observations are discussed in terms of the current trend to assume that detergent insolubility implies an association with the cytoskeleton.  相似文献   

11.
We examined the partitioning of the nonionic detergent Triton X-100 at subsolubilizing concentrations into bilayers of either egg sphingomyelin (SM), palmitoyl SM, or dipalmitoylphosphatidylcholine. SM is known to require less detergent than phosphatidylcholine to achieve the same extent of solubilization, and for all three phospholipids solubilization is temperature dependent. In addition, the three lipids exhibit a gel-fluid phase transition in the 38-41 degrees C temperature range. Experiments have been performed at Triton X-100 concentrations well below the critical micellar concentration, so that only detergent monomers have to be considered. Lipid/detergent mol ratios were never <10:1, thus ensuring that the solubilization stage was never reached. Isothermal titration calorimetry, DSC, and infrared, fluorescence, and (31)P-NMR spectroscopies were applied in the 5-55 degrees C temperature range. The results show that, irrespective of the chemical nature of the lipid, DeltaG degrees of partitioning remained in the range of -27 kJ/mol lipid in the gel phase and of -30 kJ/mol lipid in the fluid phase. This small difference cannot account for the observed phase-dependent differences in solubilization. Such virtually constant DeltaG degrees occurred as a result of the compensation of enthalpic and entropic components, which varied with both temperature and lipid composition. Consequently, the observed different susceptibilities to solubilization cannot be attributed to differential binding but to further events in the solubilization process, e.g., bilayer saturability by detergent or propensity to form lipid-detergent mixed micelles. The data here shed light on the relatively unexplored early stages of membrane solubilization and open new ways to understand the phenomenon of membrane resistance toward detergent solubilization.  相似文献   

12.
Summary The effects produced by the detergents Triton X-100, sodium dodecylsulphate and sodium cholate on sarcoplasmic reticulum vesicles have been comparatively studied. In all cases, maximal effects are found 5 min after detergent addition. Triton X-100 and SDS are approximately ten times more effective than cholate in protein and phospholipid solubilization. Both Triton X-100 and SDS maintain Ca++ accumulation in SR vesicles at detergent concentrations below 10–3 M; higher concentrations cause a strong inhibition. On the other hand, cholate produces a gradual inhibition of Ca++ accumulation in the concentration range between 10–4 M and 2.5 × 10–2 M. Triton X-100 and SDS produce a gradual solubilization of the specific Ca++-ATPase activity up to a 10–3 M detergent concentration, above which a strong inactivation occurs, while the enzyme solubilization increases with the presence of cholate in the whole concentration range under study. The different behaviour of sodium cholate, when compared to SDS or Triton X-100, is discussed in relation to the surfactant molecular structures. The possibility of membrane lysis and reassembly in the presence of some detergents is also considered.Abbreviations SR sarcoplasmic reticulum - SDS sodium dodecylsulphate - DTT dithiothreitol - EGTA ethyleneglycoltetraacetate - PEP phosphoenolpyruvate  相似文献   

13.
Rat liver mitochondrial inner and outer membranes were subjected to the solubilizing effect of the nonionic detergent Triton X-100 under various conditions. After centrifugation, the supernatants (containing the solubilized fraction) and pellets were characterized chemically and/or ultrastructurally. The detergent seems to act by inducing a phase transition from membrane lamellae to mixed protein-lipid-detergent micelles. Different electron-micro-scopy patterns are shown by the inner membranes after treatment with different amounts of surfactant, whereas the corresponding images from outer membranes vary but slightly. Selective solubilization of various components is observed, especially in the case of the inner membrane. Some membrane lipids (e.g., cardiolipin) are totally solubilized at detergent concentrations when others, such as sphyngomyelin, remain in the membrane. Other inner-membrane components (flavins, cytochromes, coenzymeQ) show different solubilization patterns. This allows the selection of conditions for optimal solubilization of a given membrane component with some degree of selectivity. The influence of Triton X-100 on various mitochondrial inner-membrane enzyme activities was studied. The detergent seems to act especially through disruption of the topology of the functional complexes, although the activity of the individual enzymes appears to be preserved. Relatively simple enzyme activities, such as ATPase, are more or less solubilized according to the detergent concentration, whereas the more complex succinate-cytochromec reductase activity practically disappears even at low Triton X-100 concentrations.  相似文献   

14.
The interaction of phosphatidylcholine bilayers with Triton X-100   总被引:1,自引:0,他引:1  
The interaction of multilamellar phosphatidylcholine vesicles with the non-ionic detergent Triton X-100 has been studied under equilibrium conditions, specially in the sub-lytic range of surfactant concentrations. Equilibrium was achieved in less than 24 h. Estimations of detergent binding to bilayers, using [3H]Triton X-100, indicate that the amphiphile is incorporated even at very low concentrations (below its critical micellar concentration); a dramatic increase in the amount of bound Triton X-100 occurs at detergent concentrations just below those producing membrane solubilization. Solubilization occurs at phospholipid/detergent molar ratios near 0.65 irrespective of lipid concentration. The perturbation produced by the surfactant in the phospholipid bilayer has been studied by differential scanning calorimetry, NMR and Fourier-transform infrared spectroscopy. At low detergent concentration (lipid/detergent molar ratios above 3), a reduction in 2H-NMR quadrupolar splitting occurs, suggesting a decrease in the static order of the acyl chains; the same effect is detected by Fourier-transform infrared spectroscopy in the form of blue shifts of the methylene stretching vibration bands. Simultaneously, the enthalpy variation of the main phospholipid phase transition is decreased by about a third with respect to its value in the pure lipid/water system. For phospholipid/detergent molar ratios between 3 and 1, the decrease in lipid static order does not proceed any further; rather an increase in fluidity is observed, characterized by a marked decrease in the midpoint transition temperature of the gel-to-fluid phospholipid transition. At the same time an isotropic component is apparent in both 31P-NMR and 2H-NMR spectra, and a new low-temperature endotherm is detected in differential scanning calorimetric traces. When phospholipid and Triton X-100 are present at equimolar ratios some bilayer structure persists, as judged from calorimetric observations, but NMR reveals only one-component isotropic signals. At lipid/detergent molar ratios below unity, the NMR lines become narrower, the main (lamellar) calorimetric endotherm tends to vanish and solubilization occurs.  相似文献   

15.
We have studied the effect of general anesthetics on the mobility of two stearic acid spin labels (5-doxyl stearic acid and 16-doxyl stearic acid) in bovine heart mitochondria and in phospholipid vesicles made from either mitochondrial lipids or commercial soybean phospholipids. The general anesthetics used include nonpolar compounds (alcohols, halothane, pentrane, diethyl ether, chloroform) and the amphipathic compound, ketamine. All anesthetics tested increase the mobility of the spin labels in phospholipid vesicles to a limited extent up to a concentration where the ESR spectra become those of free spin labels. On the other hand, anesthetics have a pronounced effect on mitochondrial membranes at concentrations as low as those known to produce general anesthesia; the effect is lower near the bilayer surface (5-doxyl stearic acid) and very strong in the bilayer core (16-doxyl stearic acid). The effects of anesthetics are mimicked by the detergent, Triton X-100. We suggest that the discrepancy between the action of anesthetics in mobilizing the spin labels in lipid vesicles and in membranes results from labilization of lipid protein interactions.  相似文献   

16.
The highly purified respiratory chain NADH dehydrogenase (EC 1.6.99.3) of Escherichia coli is inactive in the absence of detergent or phospholipid. Triton X-100 is the detergent that gives optimal activity, but the Triton X-100-activated enzyme is stimulated an additional 2-fold by E. coli phospholipids. Phosphatidylglycerol and diphosphatidylglycerol are the most effective lipid activators. The activated complex prepared with diphosphatidylglycerol is stable, whereas that with phosphatidylglycerol loses activity rapidly. Maximum activation by phospholipids occurs after preincubation at 0 degrees C and at pH 7. Triton X-100 is required at low concentrations for lipid activation, but high concentrations interfere with the activation. When the enzyme is optimally activated by phospholipids, it may be additionally activated 2-fold by spermidine, but not by magnesium. In contrast, the Triton X-100-activated form of the enzyme is stimulated by several divalent cations, without specificity. Thus, the most stable, active form of the purified NADH dehydrogenase is generated in the presence of diphosphatidylglycerol and spermidine.  相似文献   

17.
The anionic detergents sodium dodecyl sulfate (SDS) and Alipal CO-433 and the non-ionic detergent Trition X-100 at concentrations of 0.02–0.10% cause a more rapid solubilization of phospholipid than proteins in isolated rat liver plasma membranes. All three detergents cause an increase in membrane turbidity at low detergent concentration (0.01–0.04%) but then decrease the turbidity at higher detergent concentration (0.04–0.10%). Each detergent gives a characteristic turbidity-detergent concentration profile which is pH dependent.The activities of the membrane-bound enzymes Mg2+ ATPase, 5′-nucleotidase and acid and aklaline phosphatase were influenced by each detergent to a different extent. Each enzyme gave a characteristic activity-detergent concentration profile. Mg2+ ATPase was inhibited by all detergents. 5′-Nucleotidase was stimulated by Triton and Alipal but inhibited by SDS. Alkaline phosphatase was stimulated by Alipal and SDS and not influenced by Triton. Acid phosphatase was stimulated by Triton and inhibited by Alipal and SDS. 56% of the total membrane-bound alkaline phosphatase and 23% of the total membrane-bound 5′-nucleotidase was solubilized in an active form by 0.06% and 0.05% SDS respectively.  相似文献   

18.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

19.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

20.
Extraction and detergent/lipid activation of dolichol kinase   总被引:1,自引:0,他引:1  
The CTP-dependent dolichol kinase from bovine liver microsomes was optimally extracted using either 0.5% sodium deoxycholate or 0.5% Triton X-100 containing 0.5 M NH4Cl. All activity was found in the supernatant fraction following high-speed centrifugation. This fraction was depleted of phospholipid (phospholipid remaining, less than 5% of total) by gel chromatography of the 0.5% deoxycholate extract. This partially purified enzyme was maximally activated 9- or 53-fold over controls in the presence of 0.1% deoxycholate or 0.1% Triton X-100, respectively. Stimulation of the kinase was also observed with mixtures of dimyristoylphosphatidylcholine and deoxycholate. The level of stimulation by these mixtures was up to 20-fold higher than that observed in controls having deoxycholate alone. Dimyristoylphosphatidylcholine alone was not stimulatory. A 1:1 molar ratio of Triton X-100 or deoxycholate to dimyristoylphosphatidylcholine was optimal for enzyme activation. The half-maximum velocity of the dephospholipidated enzyme at 1:1 molar ratio of detergent to dimyristoylphosphatidylcholine was obtained at 150 or 550 microM CTP in the presence of deoxycholate or Triton X-100, respectively. It has been observed, therefore, that dolichol kinase may be extracted from liver microsomes, depleted of endogenous phospholipids and activated by specific molar ratios of detergent to phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号