首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variable pH 13C NMR and 1H NMR spectroscopic studies of the β-cyclodextrin (β-CD) in alkaline aqueous solutions revealed that β-CD does not deprotonate at pH < 12.0. Further increase in solution pH results in the deprotonation of OH-groups adjacent to C-2 and C-3 carbon atoms of β-CD glucopyranose units, whereas the deprotonation of OH-groups adjacent to C-6 carbon atoms is expressed less markedly. The pKa values for β-CD OH-groups adjacent to C-2 and C-3 carbon atoms are rather close, pKa1,2 being 13.5 ± 0.2 (22.5 °C).  相似文献   

2.
The synthesis of a number of leucyl derivatives of substituted anilides and their properties as substrates and inhibitors of Zn2+-Mg2+ leucine aminopeptidase (EC 3.4.11.1) at pH 8.5 and 30 °C are described. The compounds include leucyl-X where X is o-, m-, or p-aminobenzenesulfonic acid, o-, m-, or p-anisidine, and m- or p-aminobenzenesulfonyl fluoride. The latter two sulfonyl fluorides, designed to be active site-directed irreversible inhibitors, turned out to be good substrates for leucine aminopeptidase. The Km and V values of the above compounds as substrates for leucine aminopeptidase are reported. N-Leucyl-m-aminobenzenesulfonate exhibits desirable properties (solubility much greater than Km, Δ? at 295 nm of 2000 m?1 cm?1, and V of 300 μmol min?1 mg?1) as a substrate for a spectrophotometric assay of leucine aminopeptidase. With the exception of N-leucyl-p-aminobenzenesulfonate, all of the above compounds are inhibitors of the hydrolysis of leucyl-p-nitroanilide by leucine aminopeptidase with Ki values approximately their Km values when they are used as substrates. Despite wide variability in steric bulk, chemical composition, and electrical charge of the substituted anilides, the Km values of the above compounds vary over a narrow range (0.5 to 4.8 mm), which indicates that the leucyl moiety plays the predominant role in the determination of Km values. Although the Km values of m- substituents are similar to those of o- substituents, the V values for m-substituents are much greater than those for o- substituents, which suggests that o-substituents interfere with the catalytic process. N-Leucyl-p-aminobenzenesulfonate and N-alanyl-p-aminobenzenesulfonate as well as the nonsubstrate p-aminobenzenesulfonate stimulate rather than inhibit the proteolysis of leucyl-p-nitroanilide. The stimulation has no effect on V but lowers the Km for the hydrolysis of leucyl-p-nitroanilide, which is compatible with these compounds' serving as nonessential activators.  相似文献   

3.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (Tm=24°C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at Tm but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at Tm. These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above Tm in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above Tm, because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

4.
Ca2+-dependent inhibition of native and isolated ryanodine receptor (RyR) calcium release channels from sheep heart and rabbit skeletal muscle was investigated using the lipid bilayer technique. We found that cytoplasmic Ca2+ inhibited cardiac RyRs with an average K m = 15 mm, skeletal RyRs with K m = 0.7 mm and with Hill coefficients of 2 in both isoforms. This is consistent with measurements of Ca2+ release from the sarcoplasmic reticulum (SR) in skinned fibers and with [3H]-ryanodine binding to SR vesicles, but is contrary to previous bilayer studies which were unable to demonstrate Ca2+-inhibition in cardiac RyRs (Chu, Fill, Stefani &; Entman (1993) J. Membrane Biol. 135, 49–59). Ryanodine prevented Ca2+ from inhibiting either cardiac or skeletal RyRs. Ca2+-inhibition in cardiac RyRs appeared to be the most fragile characteristic of channel function, being irreversibly disrupted by 500 mm Cs+, but not by 500 mm K+, in the cis bath or by solublization with the detergent CHAPS. These treatments had no effect on channel regulation by AMP-PNP, caffeine, ryanodine, ruthenium red, or Ca2+-activation. Ca2+-inhibition in skeletal RyRs was retained in the presence of 500 mm Cs+. Our results provide an explanation for previous findings in which cardiac RyRs in bilayers with 250 mm Cs+ in the solutions fail to demonstrate Ca2+-inhibition, while Ca2+-inhibition of Ca2+ release is observed in vesicle studies where K+ is the major cation. A comparison of open and closed probability distributions from individual RyRs suggested that the same gating mechanism mediates Ca2+-inhibition in skeletal RyRs and cardiac RyRs, with different Ca2+ affinities for inhibition. We conclude that differences in the Ca2+-inhibition in cardiac and skeletal channels depends on their Ca2+ binding properties.  相似文献   

5.
Murine N1-acetylated polyamine oxidase (mPAO) was treated with N,N′-bis-(prop-2-ynyl)-1,4-diaminobutane, a poor substrate and inhibitor for the enzyme, with Km and Ki values in the millimolar range. Apparently, its oxidation produces prop-2-ynal, which reacts with amino acyl nucleophiles. Using a steady-state kinetic assay, four phases were identified, the first being the oxidation of the compound via Michealis-Menten-type kinetics. As prop-2-ynal accumulates, there is a biphasic reduction in the rate. This process leads to an mPAO form that is nearly inactive (fourth phase), but displays classical Michealis-Menten-type kinetics. The enzyme-bound flavin is not modified in this process. In contrast, micromolar concentrations of the MDL 72527 (N,N′-bis-[buta-2,3-dienyl]-1,4-diaminobutane) inhibited mPAO rapidly and completely. It inhibits by first binding tightly and apparently irreversibly, and then slowly converts to a species where the inhibitor is covalently bound to the N5-position of the flavin’s isoalloxazine ring. The covalent adduct was identified as a flavocyanine.  相似文献   

6.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

7.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

8.
Photosynthetically active vesicles prepared from Chlamydomonas reinhardtii retained a light-dependent glutamate synthase activity which was highly specific for 2-oxoglutarate (Km=2.1 mM) and L-glutamine (Km=0.9 mM) as amido group acceptor and donor respectively. This activity was inhibited by azaserine, p-hydroxymercuribenzoate and 3-(p-chlorophenyl)-1,1-dimethyl urea.Light-dependent synthesis of glutamate was also obtained by coupling Chlamydomonas photosynthetic particles to purified ferredoxin-glutamate synthase, using ascorbate and 2,6-dichlorophenol-indophenol as electron donor. This system was also specific for 2-oxoglutarate (Km=1 mM) and L-glutamine (Km=0.8 mM) as substrates, and was stimulated by dithioerythritol. Azaserine and p-hydroxymercuribenzoate, but not 3-(p-chlorophenyl)-1,1-dimethyl urea, inhibited the reconstituted activity; high concentrations of 2-oxoglutarate were inhibitory.Abbreviations A Absorbance - CCP p-Trichlorometoxi-carbonylcyanide-phenylhydrazone - Chl Chlorophyll - CMU 3-(p-Chlorophenyl)-1,1-dimethyl urea - DPIP 2,6-Dichlorophenol-indophenol - DTE Dithioerythritol - MSX L-Methionine, D-L, sulfoximine - MV Methyl viologen  相似文献   

9.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

10.
Many organic anions bind free Ca2+, the total concentration of which must be adjusted in experimental solutions. Because published values for the apparent dissociation constant (Kapp) describing the Ca2+ affinity of short chain fatty acids (SCFAs) and gluconate are highly variable, Ca2+ electrodes coupled to either a 3 M KCl or a Na+ selective electrode were used to redetermine Kapp. All solutions contained 130 mM Na+, whereas the concentration of the studied anion was varied from 15 to 120 mM, replacing Cl that was decreased concomitantly to maintain osmolarity. This induces changes in the liquid junction potential (LJP) at the 3 M KCl reference electrode, leading to a systematic underestimation of Kapp if left uncorrected. Because the Na+ concentration in all solutions was constant, a Na+ electrode was used to directly measure the changes in the LJP at the 3 M KCl reference, which were under 5 mV but twice those predicted by the Henderson equation. Determination of Kapp either after correction for these LJP changes or via direct reference to a Na+ electrode showed that SCFAs do not bind Ca2+ and that the Kapp for the binding of Ca2+ to gluconate at pH 7.4, ionic strength 0.15 M, and 23 °C was 52.7 mM.  相似文献   

11.
We have previously shown how the location of an intercalant within the lipid bilayer can be qualitatively determined by using the excellent correlation that exists between the 13C NMR chemical shift of a polarizable carbon (e.g., the carbonyl or nitronyl carbon) and the polarity (using the Dimroth-Reichardt's ET(30) parameter) of the microenvironment in which that carbon resides. In a companion paper, we have determined criteria for reporter molecules that will assist us in converting this qualitative polarity data into quantitative Angstrom values. In the present paper, we report on our initial success in quantitatively mapping of the DMPC bilayer by linking two or more vertical points within a bilayer by both distance (in Angstroms) and ET(30) polarity. The results correlated well with the values obtained using the “parallax method” of Erwin London.  相似文献   

12.
Thymidylate synthase (TS) was found to be a substrate for both catalytic subunits of human CK2, with phosphorylation by CK2α and CK2α′ characterized by similar Km values, 4.6 μM and 4.2 μM, respectively, but different efficiencies, the apparent turnover number with CK2α being 10-fold higher. With both catalytic subunits, phosphorylation of human TS, like calmodulin and BID, was strongly inhibited in the presence of the regulatory subunit CK2β, the holoenzyme being activated by polylysine. Phosphorylation of recombinant human, rat, mouse and Trichinella spiralis TSs proteins was compared, with the human enzyme being apparently a much better substrate than the others. Following hydrolysis and TLC, phosphoserine was detected in human and rat, and phosphotyrosine in T. spiralis, TS, used as substrates for CK2α. MALDI-TOF MS analysis led to identification of phosphorylated Ser124 in human TS, within a sequence LGFS124TREEGD, atypical for a CK2 substrate recognition site. The phosphorylation site is located in a region considered important for the catalytic mechanism or regulation of human TS, corresponding to the loop 107-128. Following phosphorylation by CK2α, resulting in incorporation of 0.4 mol of phosphate per mol of dimeric TS, human TS exhibits unaltered Km values for dUMP and N5,10-methylenetetrahydrofolate, but a 50% lower turnover number, pointing to a strong influence of Ser124 phosphorylation on its catalytic efficiency.  相似文献   

13.
The properties of the α1 Na+-K+ pump were compared in Dahl salt-sensitive (DS) and salt-resistant (DR) strains by measuring ouabain-sensitive luxes (mmol/liter cell x hr = FU, Mean ± se) in red blood cells (RBCs) and varying internal ( i ) and external ( o ) Na+ and K+ concentrations. Kinetic parameters of several modes of operation, i.e., Na+/ K+, K+/K+, Na+/Na+ exchanges, were characterized and analyzed for curve-fitting using the Enzfitter computer program. In unidirectional flux studies (n=12 rats of each strain) into fresh cells incubated in 140 mm Na+ + 5 mm K+, ouabain-sensitive K+ influx was substantially lower in the DS than in DR RBCs, while ouabain-sensitive Na+ efflux and Na i were similar in both strains. Thus, the coupling ratio between unidirectional Na+∶K+ fluxes was significantly higher in DS than in DR cells at similar RBC Na+ content. In the presence of 140 mm Na o , activation of ouabain-sensitive K+ influx by K o had a lower K m and V max in DS as estimated by the Garay equation (N=2.70 ± 0.33, K m 0.74 ± 0.09 mm; V max 2.87 ± 0.09 FU) than in DR rats (N=1.23 ± 0.36, K m 2.31 ± 0.16 mm; v max 5.70 ± 0.52 FU). However, the two kinetic parameters were similar following Na o removal. The activation of ouabain-sensitive K+ influx by Na i had significantly lower V max in DS (9.3 ± 0.4 FU) than in DR (14.5 ± 0.6 FU) RBCs but similar K m. These data suggest that the low K+ influx in DS cells is caused by a defect in modulation by Na o and Na i . Na+ efflux showed no differences in Na i activation or trans effects by Na o and K o , thus accounting for the different Na+∶K+ coupling ratio in the Dahl strains. Further evidence for the differences in the coupling of ouabain-sensitive fluxes was found in studies of net Na+ and K+ fluxes, where the net ouabain-sensitive Na+ losses showed similar magnitudes in the two Dahl strains while the net ouabainsensitive K+ gains were significantly greater in the DR than the DS RBCs. Ouabain-sensitive Na+ influx and K+ efflux were also measured in these rat RBCs. The inhibition of ouabain-sensitive Na+ influx by K o was fully competitive for the DS but not for the DR pumps. Thus, for DR pumps, K o could activate higher K+ influx in DR pumps without a complete inhibition of ouabain-sensitive Na+ influx. This behavior is consistent with K o interaction with distinct Na+ and K+ transport sites. In addition, the inhibition of K+ efflux by Na, was different between Dahl strains. Ouabain-sensitive K+ efflux at Na i level of 4.6 mmol/liter cell, was significantly higher in DS (3.86 ± 0.67 FU) than in DR (0.86 ± 0.14 FU) due to a threefold higher K50 for Na i -inhibition 9.66 ± 0.41 vs. 3.09 ± 0.11 mmol/liter cell. This finding indicates that Na+ modulation of K+ transport is altered at both sides of the membrane. The dissociation of Na+ modulatory sites of K+ transport from Na+ transport sites observed in RBCs of Dahl strains suggests that K+ transport by the Na+-K+ pump is controlled by Na+ allosteric sites different from the Na+ transport sites. The alterations in K+ transport may be related to the amino acid substitution (Leu/Gln276) reported for the cDNA of the α1 subunit of the Na+-K+ pump in the DS strain or to post-translational modifications during RBC maturation. These studies were supported by the following grants: NIH (HL-35664, HL-42120, HL-18318, HL-39267, HL-01967). J.R.R. is a Ford Foundation Predoctoral Fellow. A preliminary report of this work was presented at the International Conference on the Na+-K+ pump and 44th Annual Meeting of the Society of General Physiologists held at Woods Hole, MA, September 5–9, 1990, and published as an abstract in the J. Gen. Physiol. 96:70a, 1990.  相似文献   

14.
With 3-O-methylfluorescein phosphate (3-OMFP) as substrate for the phosphatase reaction catalyzed by the (Na+ + K+)-ATPase, a number of properties of that reaction differ from those with the common substratep-nitrophenyl phosphate (NPP): theK m is 2 orders of magnitude less and the Vmax is two times greater, and dimethyl sulfoxide (Me2SO) inhibits rather than stimulates. In addition, reducing the incubation pH decreases both theK m and Vmax for K+-activated 3-OMFP hydrolysis as well as theK 0.5 for K+ activation. However, reducing the incubation pH increases inhibition by Pi and the Vmax for 3-OMFP hydrolysis in the absence of K+. When choline chloride is varied reciprocally with NaCl to maintain the ionic strength constant, NaCl inhibits K+-activated 3-OMFP hydrolysis modestly with 10 mM KCl, but stimulates (in the range 5–30 mM NaCl) with suboptimal (0.35 mM) KCl. In the absence of K+, however, NaCl stimulates increasingly over the range 5–100 mM when the ionic strength is held constant. These observations are interpreted in terms of (a) differential effects of the ligands on enzyme conformations; (b) alternative reaction pathways in the absence of Na+, with a faster, phosphorylating pathway more readily available to 3-OMFP than to NPP; and (c) a (Na+ + K+)-phosphatase pathway, most apparent at suboptimal K+ concentrations, that is also more readily available to 3-OMFP.Abbreviations Et3N triethyl amine - FITC fluorescein isothiocyanate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - MES 2-(N-morpholino)ethanesulfonate - Me2SO dimethyl sulfoxide - NPP p-nitrophenyl phosphate - 3-OMFP 3-O-methylfluorescein phosphate - TNP-ATP 2, (or 3)-O-(2,4,6-trinitrophenyl)-ATP  相似文献   

15.
16.
《Inorganica chimica acta》2007,360(9):2973-2982
Syntheses and crystal structures of two molecular, heteroleptic cadmium complexes with CdS2NO2 and CdS2N2 kernels are described. Bis(tri-tert-butoxysilanethiolate)(1-methylimidazole)cadmium(II) and bis(tri-tert-butoxysilanethiolate)bis(1-methylimidazole)cadmium(II) coexist at equilibrium in chloroform solutions with varying concentrations of bis[bis(tri-tert-butoxysilanethiolate)cadmium(II)] and 1-methylimidazole. The equilibrium is characterized by solution 113Cd NMR spectra. Solid state CP MAS 13C, 29Si, 113Cd NMR data for the complexes are also reported, analyzed and compared with the results obtained for cadmium-substituted proteins. The similarities and differences between the structures of cadmium complexes and their zinc analogues are discussed.  相似文献   

17.
The aim of this work was to examine the effects of changes in external K+ concentration (K o ) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H+-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid NG108-15 cells using the whole-cell patch-clamp technique. The results are as follows: (i) under standard conditions (K o =5 mm) the membrane potential was –60±1 mV. It was unchanged when K o was decreased to 1 mm and was depolarized by 4±1 mV when Ko was increased to 10 mm. (ii) Internal Cs+ depolarized the membrane by 21±3 mV. (iii) The internal application of the vacuolar H+-ATPase inhibitors N-ethylmaleimide (NEM), NO 3 and bafilomycin A1 (BFA) depolarized the membrane by 15±2, 18±2 and 16±2 mV, respectively, (iv) When NEM or BFA were added to the internal medium containing Cs+, the membrane was depolarized by 45±1 and 42±2 mV, respectively. (v) The external application of CCCP induced a transient depolarization followed by a prolonged hyperpolarization. This hyperpolarization was absent in BFA-treated cells. The voltage-dependent K+ current was increased at negative voltages and decreased at positive voltages by NEM, BFA and CCCP. Taken together, these results suggest that under physiological conditions, the resting potential of NG108-15 neuroblastoma cells is maintained at negative values by both voltage-dependent K+ channels and an electrogenic vacuolar type H+-ATPase.This work was supported by a grant from INSERM (CRE 91 0906).  相似文献   

18.
Xylem parenchyma cells are situated around the (apoplastic) xylem vessels and are involved in the control of the composition of the xylem sap by exporting and resorbing solutes. We investigated properties of the K+ inward rectifier in the plasma membrane of these cells by performing patch clamp experiments on protoplasts in the whole-cell configuration. Inward currents were sensitive to the K+ channel blocker TEA+ at a high concentration (20 mm). Barium, another classical K+ channel blocker, inhibited K+ currents with a K i of about 1.3 mm. In contrast to guard cells, the cytosolic Ca2+ level proved to be ineffective in regulating the K+ conductance at hyperpolarization. External Ca2+ blocked currents weakly in a voltage-dependent manner. From instantaneous current-voltage curves, we identified a binding site in the channel pore with an electrical distance of about 0.2 to 0.5. Lanthanum ions reduced the inward current in a voltage-dependent manner and simultaneously displaced the voltage at which half of the channels are in the open state to more positive values. This finding was interpreted as resulting from a sum of two molecular effects, an interaction with the mouth of the channel that causes a reduction of current, and a binding to the voltage sensor, leading to a shielding of surface charges and, subsequently, a modulation of channel gating.A comparison between the K+ inward rectifier in xylem parenchyma cells, guard cells and KAT1 from Arabidopsis leads to the conclusion that these rectifiers form subtypes within one class of ion channels. The ineffectiveness of Ca2+ to control K+ influx in xylem parenchyma cells is interpreted in physiological terms.  相似文献   

19.
ATP-sensitive K+ (KATP) channels are distributed in a variety of cell types, including hippocampal neurons. These channels provide a link between electrical activity of cell membranes and cellular metabolism. The activity of KATP channels in hippocampal H19-7 neurons treated with or without short interfering RNAs (siRNAs) directed against Kir6.2 mRNA was investigated in this study. In single-channel recordings, cell exposure to diazoxide (30 μM) significantly prolonged the mean open time of KATP channels; however, neither closed-time kinetics nor the single-channel conductance of the channel was altered by this compound. However, in cells transfected with Kir6.2 siRNAs, diazoxide-stimulated activity of KATP channels was abolished. Based on single-channel recordings, the activity of KATP channels was mathematically constructed in a Markovian manner. The simulated activity of single KATP channels was incorporated in a modeled hippocampal neuron to assess how any changes in KATP-channel activity affect burst firing of action potentials (APs). The modeled neuron was adopted from the model of Xu and Clancy (2008). Specifically, to mimic the action of diazoxide, the baseline value of open time (τbas) of KATP channels was arbitrarily elevated, while varying number of active channels (NO) was set to simulate electrical behavior of Kir6.2 siRNAs-transfected cells. The increase of either NO or τbas depressed membrane excitability of modeled neuron. Fast-slow analysis of AP bursting from this modeled neuron also revealed that the increased KATP-channel activity shifted the voltage nullcline in an upward direction, thereby leading to a reduction of the repetitive spike regime. Taken together, it is anticipated that the increased activity of KATP channels caused by increasing NO or τbas contributes to or is responsible for burst firing of APs in hippocampal neurons if similar results occur in vivo.  相似文献   

20.
Dissociation and alkali complex formation equilibria of nitrilotris(methylenephosphonic acid) (NTMP, H6L) have been studied by dilatometric, potentiometric and 31P NMR-controlled titrations. Dilatometry indicated the formation of alkali complexes ML (M=Li, Na, K, Rb, Cs) at high pH with a stability decreasing from Li to Cs. An efficient combination of potentiometric and NMR methods confirmed two types of alkali metal complexes MHL and ML. Stability constants for the equilibria following M+ + HL5− ? MHL4− and M+ + L6− ? ML5−, respectively, were determined: logKNaHL=1.08(0.07), logKKHL=0.86(0.08), logKNaL=2.24(0.03). Systematic errors are introduced by using alkali metal hydroxides as titrants for routine potentiometric determinations of dissociation constants pKa5app and pKa6app. Correction formulae were derived to convert actual dissociation constants pKa into apparent dissociation constants pKaapp (or vice versa). The actual dissociation constants were found: pKa5(H2L4− ? H+ + HL5−)=7.47(0.03) and pKa6(HL5− ? H+ + L6−)=14.1(0.1). The anisotropy of 31P chemical shifts of salts MnH6 − nL (M=Li, Na, n=0-5) is more sensitive towards titration (n) than isotropic solution state chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号