首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. Notably the bovine enzyme comprises up to 46 subunits, while 27 subunits could be considered as widely conserved among eukaryotic complex I. By combining proteomic and genomic approaches, we characterized the complex I composition from the unicellular green alga Chlamydomonas reinhardtii. After purification by blue-native polyacrylamide gel electrophoresis (BN-PAGE), constitutive subunits were analyzed by SDS-PAGE coupled to tandem mass spectrometry (MS) that allowed the identification of 30 proteins. We compared the known complex I components from higher plants, mammals, nematodes and fungi with this MS data set and the translated sequences from the algal genome project. This revealed that the Chlamydomonas complex I is likely composed of 42 proteins, for a total molecular mass of about 970 kDa. In addition to the 27 typical components, we have identified four new complex I subunit families (bovine ESSS, PFFD, B16.6, B12 homologues), extending the number of widely conserved eukaryote complex I components to 31. In parallel, our analysis showed that a variable number of subunits appears to be specific to each eukaryotic kingdom (animals, fungi or plants). Protein sequence divergence in these kingdom-specific sets is significant and currently we cannot exclude the possibility that homology between them exists, but has not yet been detected.  相似文献   

2.
Joshua L Heazlewood 《BBA》2003,1604(3):159-169
The NADH:ubiquinone oxidoreductase of the mitochondrial respiratory chain is a large multisubunit complex in eukaryotes containing 30-40 different subunits. Analysis of this complex using blue-native gel electrophoresis coupled to tandem mass spectrometry (MS) has identified a series of 30 different proteins from the model dicot plant, Arabidopsis, and 24 different proteins from the model monocot plant, rice. These proteins have been linked back to genes from plant genome sequencing and comparison of this dataset made with predicted orthologs of complex I components in these plants. This analysis reveals that plants contain the series of 14 highly conserved complex I subunits found in other eukaryotic and related prokaryotic enzymes and a small set of 9 proteins widely found in eukaryotic complexes. A significant number of the proteins present in bovine complex I but absent from fungal complex I are also absent from plant complex I and are not encoded in plant genomes. A series of plant-specific nuclear-encoded complex I associated subunits were identified, including a series of ferripyochelin-binding protein-like subunits and a range of small proteins of unknown function. This represents a post-genomic and large-scale analysis of complex I composition in higher plants.  相似文献   

3.
The NADH:ubiquinone oxidoreductase of the mitochondrial respiratory chain is a large multisubunit complex in eukaryotes containing 30-40 different subunits. Analysis of this complex using blue-native gel electrophoresis coupled to tandem mass spectrometry (MS) has identified a series of 30 different proteins from the model dicot plant, Arabidopsis, and 24 different proteins from the model monocot plant, rice. These proteins have been linked back to genes from plant genome sequencing and comparison of this dataset made with predicted orthologs of complex I components in these plants. This analysis reveals that plants contain the series of 14 highly conserved complex I subunits found in other eukaryotic and related prokaryotic enzymes and a small set of 9 proteins widely found in eukaryotic complexes. A significant number of the proteins present in bovine complex I but absent from fungal complex I are also absent from plant complex I and are not encoded in plant genomes. A series of plant-specific nuclear-encoded complex I associated subunits were identified, including a series of ferripyochelin-binding protein-like subunits and a range of small proteins of unknown function. This represents a post-genomic and large-scale analysis of complex I composition in higher plants.  相似文献   

4.
In the green alga Chlamydomonas reinhardtii, a mutant deprived of complex I enzyme activity presents a 1T deletion in the mitochondrial nd5 gene. The loss of the ND5 subunit prevents the assembly of the 950 kDa whole complex I. Instead, a low abundant 700 kDa subcomplex, loosely associated to the inner mitochondrial membrane, is assembled. The resolution of the subcomplex by SDS-PAGE gave rise to 19 individual spots, sixteen having been identified by mass spectrometry analysis. Eleven, mainly associated to the hydrophilic part of the complex, are homologs to subunits of the bovine enzyme whereas five (including gamma-type carbonic anhydrase subunits) are specific to green plants or to plants and fungi. None of the subunits typical of the β membrane domain of complex I enzyme has been identified in the mutant. This allows us to propose that the truncated enzyme misses the membrane distal domain of complex I but retains the proximal domain associated to the matrix arm of the enzyme. A complex I topology model is presented in the light of our results. Finally, a supercomplex most probably corresponding to complex I-complex III association, was identified in mutant mitochondria, indicating that the missing part of the enzyme is not required for the formation of the supercomplex.  相似文献   

5.
Klodmann J  Braun HP 《Phytochemistry》2011,72(10):1071-26092
Mitochondrial NADH dehydrogenase complex (complex I) is by far the largest protein complex of the respiratory chain. It is best characterized for bovine mitochondria and known to consist of 45 different subunits in this species. Proteomic analyses recently allowed for the first time to systematically explore complex I from plants. The enzyme is especially large and includes numerous extra subunits. Upon subunit separation by various gel electrophoresis procedures and protein identifications by mass spectrometry, overall 47 distinct types of proteins were found to form part of Arabidopsis complex I. An additional subunit, ND4L, is present but could not be detected by the procedures employed due to its extreme biochemical properties. Seven of the 48 subunits occur in pairs of isoforms, six of which were experimentally proven. Fifteen subunits of complex I from Arabidopsis are specific for plants. Some of these resemble enzymes of known functions, e.g. carbonic anhydrases and l-galactono-1,4-lactone dehydrogenase (GLDH), which catalyzes the last step of ascorbate biosynthesis. This article aims to review proteomic data on the protein composition of complex I in plants. Furthermore, a proteomic re-evaluation on its protein constituents is presented.  相似文献   

6.
The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits.  相似文献   

7.
The increasing availability of sequenced genomes enables the reconstruction of the evolutionary history of large protein complexes. Here, we trace the evolution of NADH:ubiquinone oxidoreductase (Complex I), which has increased in size, by so-called supernumary subunits, from 14 subunits in the bacteria to 30 in the plants and algae, 37 in the fungi and 46 in the mammals. Using a combination of pair-wise and profile-based sequence comparisons at the levels of proteins and the DNA of the sequenced eukaryotic genomes, combined with phylogenetic analyses to establish orthology relationships, we were able to (1) trace the origin of six of the supernumerary subunits to the alpha-proteobacterial ancestor of the mitochondria, (2) detect previously unidentified homology relations between subunits from fungi and mammals, (3) detect previously unidentified subunits in the genomes of several species and (4) document several cases of gene duplications among supernumerary subunits in the eukaryotes. One of these, a duplication of N7BM (B17.2), is particularly interesting as it has been lost from genomes that have also lost Complex I proteins, making it a candidate for a Complex I interacting protein. A parsimonious reconstruction of eukaryotic Complex I evolution shows an initial increase in size that predates the separation of plants, fungi and metazoa, followed by a gradual adding and incidental losses of subunits in the various evolutionary lineages. This evolutionary scenario is in contrast to that for Complex I in the prokaryotes, for which the combination of several separate, and previously independently functioning modules into a single complex has been proposed.  相似文献   

8.
Modern α-proteobacteria are thought to be closely related to the ancient symbiont of eukaryotes, an ancestor of mitochondria. Respiratory complex I from α-proteobacteria and mitochondria is well conserved at the level of the 14 "core" subunits, consistent with that notion. Mitochondrial complex I contains the core subunits, present in all species, and up to 31 "supernumerary" subunits, generally thought to have originated only within eukaryotic lineages. However, the full protein composition of an α-proteobacterial complex I has not been established previously. Here, we report the first purification and characterization of complex I from the α-proteobacterium Paracoccus denitrificans. Single particle electron microscopy shows that the complex has a well defined L-shape. Unexpectedly, in addition to the 14 core subunits, the enzyme also contains homologues of three supernumerary mitochondrial subunits as follows: B17.2, AQDQ/18, and 13 kDa (bovine nomenclature). This finding suggests that evolution of complex I via addition of supernumerary or "accessory" subunits started before the original endosymbiotic event that led to the creation of the eukaryotic cell. It also provides further confirmation that α-proteobacteria are the closest extant relatives of mitochondria.  相似文献   

9.
The adenosine triphosphate (ATP) synthase and complex I in mitochondria are membrane-bound multisubunit assemblies of both hydrophilic and hydrophobic proteins. Hitherto, the mass spectrometric measurement of their molecular masses has required that many of the hydrophobic proteins be analyzed separately from the other components in two different experiments. Here we describe a procedure that allows the molecular masses of all, or nearly all, of the subunits of each complex to be measured in a single experiment. The key feature is a mobile phase, in which hydrophilic and hydrophobic components remain soluble, that is compatible with reverse phase chromatography. In this way, the masses of all 17 subunits of bovine ATP synthase, 14 of the 17 subunits of the enzyme from Saccharomyces cerevisiae, 42 of the 45 subunits of bovine complex I, and all 28 of the subunits of bovine subcomplex Iα were measured. The method was used to characterize the subunits of ATP synthases and complexes I from a variety of species and to follow the progress of mild trypsinolysis of ATP synthase. It could be applied to other respiratory and photosynthetic complexes and, in general, to any protein complex that contains both hydrophilic and hydrophobic subunits.  相似文献   

10.
In the green alga Chlamydomonas reinhardtii, a mutant deprived of complex I enzyme activity presents a 1T deletion in the mitochondrial nd5 gene. The loss of the ND5 subunit prevents the assembly of the 950 kDa whole complex I. Instead, a low abundant 700 kDa subcomplex, loosely associated to the inner mitochondrial membrane, is assembled. The resolution of the subcomplex by SDS-PAGE gave rise to 19 individual spots, sixteen having been identified by mass spectrometry analysis. Eleven, mainly associated to the hydrophilic part of the complex, are homologs to subunits of the bovine enzyme whereas five (including gamma-type carbonic anhydrase subunits) are specific to green plants or to plants and fungi. None of the subunits typical of the beta membrane domain of complex I enzyme has been identified in the mutant. This allows us to propose that the truncated enzyme misses the membrane distal domain of complex I but retains the proximal domain associated to the matrix arm of the enzyme. A complex I topology model is presented in the light of our results. Finally, a supercomplex most probably corresponding to complex I-complex III association, was identified in mutant mitochondria, indicating that the missing part of the enzyme is not required for the formation of the supercomplex.  相似文献   

11.
The exocyst complex is a multi-subunits evolutionary conserved complex, which was originally shown to be primarily associated with vesicular transport to the plasma membrane. A recent report (Kulich et al., 2013 Traffic; In Press) revealed that AtEXO70B1, one of the multiple subunits of the exocyst complex of Arabidopsis thaliana plants, is co-transported with the autophagy-associated Atg8f protein to the vacuole. This pathway does not involve the Golgi apparatus. The co-localization of AtEXO70B1 and Atg8f suggests either that both of these proteins are co-transported together to the vacuole or, alternatively, that Atg8 binds to a putative Atg8 interacting motif (AIM) located within the AtEXO70B1 polypeptide, apparently forming a tethering complex for an autophagic complex that is transported to the vacuole. In the present addendum, by tooling a bioinformatics approach, we show that AtEXO70B1 as well as the additional 20 paralogs of Arabidopsis EXO70 exocyst subunits each possess one or more AIMs whose consensus sequence implies their high fidelity binding to Atg8. This indicates that the autophagy machinery is strongly involved in the assembly, transport, and apparently also the function of AtEXO70B1 as well as the exocyst sub complex.  相似文献   

12.
13.
The preprotein translocase of the outer mitochondrial membrane (also called TOM complex) from Arabidopsis thaliana was characterized by Blue-native gel electrophoresis (BN-PAGE) and Electrospray Tandem Mass Spectrometry (ESI-MS/MS). BN-PAGE allows to prepare a very stable 390 kDa complex that includes six different protein types: the 34 kDa translocation pore TOM40, the 21/23 kDa preprotein receptor TOM20, the small TOM component TOM7 and three further subunits of 10, 6.3 and 6.0 kDa. Primary structures of all TOM subunits were elucidated. The 10 kDa subunit represents a truncated version of the TOM22 preprotein receptor and the two 6 kDa proteins represent subunits possibly homologous to fungal TOM6 and TOM5, although sequence conservation is at the borderline of significance. TOM40, TOM7 and one or both of the 6 kDa subunits form a subcomplex of about 100 kDa. The six TOM proteins from Arabidopsis are encoded by 12 genes, at least 11 of which are expressed. While the subunit composition of the TOM complex from fungi, animals and plants is remarkably conserved, the domain structure of individual TOM proteins differs, e.g. acidic domains in TOM22 and the 6 kDa TOM subunits from Arabidopsis are absent. The domain structure of the Arabidopsis TOM complex does not support the so-called ‘acid chain hypothesis’, which explains the translocation of proteins across the outer mitochondrial membrane of mitochondria by the binding of preproteins to acidic protein domains within the TOM complex. Functional implications are discussed.  相似文献   

14.
In higher plants, genes for subunits of respiratory chain complex I (NADH:ubiquinone oxidoreductase) have so far been identified solely in organellar genomes. At least nine subunits are encoded by the mitochondrial DNA and 11 homologues by the plastid DNA. One of the 'key' components of complex I is the subunit binding the substrate NADH. The corresponding gene for the mitochondrial subunit has now been cloned and identified in the nuclear genome from potato ( Solanum tuberosum ). The mature protein consists of 457 amino acids and is preceded by a mitochondrial targeting sequence of 30 amino acids. The protein is evolutionarily related to the NADH-binding subunits of complex I from other eukaryotes and is well conserved in the structural domains predicted for binding the substrate NADH, the FMN and one iron-sulphur cluster. Expression examined in different potato tissues by Northern blot analysis shows the highest steady-state mRNA levels in flowers.
Precursor proteins translated in vitro from the cDNA are imported into isolated potato mitochondria in a ΔΨ-dependent manner. The processed translation product has an apparent molecular mass of 55 kDa, identical to the mature protein present in the purified plant mitochondrial complex I. However, the in-vitro translated protein is not imported into isolated chloroplasts. To further investigate whether the complex I-like enzyme in chloroplasts contains an analogous subunit for binding of NAD(P)H, different plastid protein fractions were tested with a polyclonal antiserum directed against the bovine 51 kDa NADH-binding subunit. In none of the different thylakoid or stroma protein fractions analysed were specific crossreactive polypeptides detected. These results are discussed particularly with respect to the structure of a potential complex I in chloroplasts and the nature of its acceptor site.  相似文献   

15.
Respiratory chain complex I of the fungus Neurospora crassa contains at least 39 polypeptide subunits, of which 35 are conserved in mammals. The 11.5 kDa and 14 kDa proteins, homologues of bovine IP15 and B16.6, respectively, are conserved among eukaryotes and belong to the membrane domain of the fungal enzyme. The corresponding genes were separately inactivated by repeat-induced point-mutations, and null-mutant strains of the fungus were isolated. The lack of either subunit leads to the accumulation of distinct intermediates of the membrane arm of complex I. In addition, the peripheral arm of the enzyme seems to be formed in mutant nuo14 but, interestingly, not in mutant nuo11.5. These results and the analysis of enzymatic activities of mutant mitochondria indicate that both polypeptides are required for complex I assembly and function.  相似文献   

16.
Complex I deficiency is commonly associated with mitochondrial oxidative phosphorylation diseases. Mutations in nuclear genes encoding structural subunits or assembly factors of complex I have been increasingly identified as the cause of the diseases. One such factor, NDUFAF2, is a paralog of the NDUFA12 structural subunit of the enzyme, but the mechanism by which it exerts its function remains unknown. Herein, we demonstrate that the Neurospora crassa NDUFAF2 homologue, the 13.4L protein, is a late assembly factor that associates with complex I assembly intermediates containing the membrane arm and the connecting part but lacking the N module of the enzyme. Furthermore, we provide evidence that dissociation of the assembly factor is dependent on the incorporation of the putative regulatory module composed of the subunits of 13.4 (NDUFA12), 18.4 (NDUFS6), and 21 (NDUFS4) kDa. Our results demonstrate that the 13.4L protein is a complex I assembly factor functionally conserved from fungi to mammals.  相似文献   

17.
Role of subunits in eukaryotic Photosystem I.   总被引:10,自引:0,他引:10  
Photosystem I (PSI) of eukaryotes has a number of features that distinguishes it from PSI of cyanobacteria. In plants, the PSI core has three subunits that are not found in cyanobacterial PSI. The remaining 11 subunits of the core are conserved but several of the subunits have a different role in eukaryotic PSI. A distinguishing feature of eukaryotic PSI is the membrane-imbedded peripheral antenna. Light-harvesting complex I is composed of four different subunits and is specific for PSI. Light-harvesting complex II can be associated with both PSI and PSII. Several of the core subunits interact with the peripheral antenna proteins and are important for proper function of the peripheral antenna. The review describes the role of the different subunits in eukaryotic PSI. The emphasis is on features that are different from cyanobacterial PSI.  相似文献   

18.
Andrea Di Luca  Ville R.I. Kaila 《BBA》2018,1859(5):326-332
The respiratory complex I is an enzyme responsible for the conversion of chemical energy into an electrochemical proton motive force across the membrane. Despite extensive studies, the mechanism by which the activity of this enormous, ca. 1?MDa, redox-coupled proton pump is regulated still remains unclear. Recent structural studies (Zhu et al., Nature 2016; Fiedorczuk et al., Nature 2016) resolved complex I in different conformations connected to the active-to-deactive (A/D) transition that regulate complex I activity in several species. Based on anisotropic network models (ANM) and principal component analysis (PCA), we identify here transitions between experimentally resolved structures of the mammalian complex I as low-frequency collective motions of the enzyme, highlighting similarities and differences between the bacterial and mammalian enzymes. Despite the reduced complexity of the smaller bacterial enzyme, our results suggest that the global dynamics of complex I is overall conserved. We further probe how the supernumerary subunits could be involved in the modulation of the A/D-transition, and show that in particular the 42?kDa and B13 subunits affect the global motions of the mammalian enzyme.  相似文献   

19.
20.
Understanding the roles of the components of the multienzyme complex of the anaerobial cellulase system, acting on complex substrates, is crucial to the development of efficient cellulase systems for industrial applications such as converting lignocellulose to sugars for bioethanol production. In this study, we purified the multienzyme complex of Neocallimastix patriciarum J11 from a broth through cellulose affinity purification. The multienzyme complex is composed of at least 12 comprised proteins, based on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Eight of these constituents have demonstrated β-glucanase activity on zymogram analysis. The multienzyme complex contained scaffoldings that respond to the gathering of the cellulolytic components. The levels and subunit ratio of the multienzyme complex from N. patriciarum J11 might have been affected by their utilized carbon sources, whereas the components of the complexes were consistent. The trypsin-digested peptides of six proteins were matched to the sequences of cellulases originating from rumen fungi, based on identification through liquid chromatography/mass spectrometry, revealing that at least three types of cellulase, including one endoglucanase and two exoglucanases, could be found in the multienzyme complex of N. patriciarum J11. The cellulolytic subunits could hydrolyze synergistically on both the internal bonds and the reducing and nonreducing ends of cellulose. Based on our research, our findings are the first to depict the composition of the multienzyme complex produced by N. patriciarum J11, and this complex is composed of scaffoldin and three types of cellulase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号