首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim WT  Yang SF 《Plant physiology》1992,100(3):1126-1131
Ethylene production in plant tissues declines rapidly following induction, and this decline is due to a rapid decrease in the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme in ethylene biosynthesis. To study the nature of the rapid turnover of ACC synthase in vivo, proteins in wounded ripening tomato (Lycopersicon esculentum) fruit discs were radiolabeled with [35S]methionine, followed by a chase with nonradioactive methionine. Periodically, the radioactive ACC synthase was isolated with an immunoaffinity gel and analyzed. ACC synthase protein decayed rapidly in vivo with an apparent half-life of about 58 min. This value for protein turnover in vivo is similar to that previously reported for activity half-life in vivo and substrate-dependent enzyme inactivation in vitro. Carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol, potent uncouplers of oxidative phosphorylation, strongly inhibited the rapid decay of ACC synthase protein in the tissue. Degradation of this enzyme protein was moderately inhibited by the administration of aminooxyacetic acid, a competitive inhibitor of ACC synthase with respect to its substrate S-adenosyl-l-methionine, α,α′-dipyridyl, and phenylmethanesulfonyl fluoride or leupeptin, serine protease inhibitors. These results support the notion that the substrate S-adenosyl-l-methionine participates in the rapid inactivation of the enzyme in vivo and suggest that some ATP-dependent processes, such as the ubiquitin-requiring pathway, are involved in the degradation of ACC synthase proteins.  相似文献   

2.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

3.
Satoh S  Yang SF 《Plant physiology》1988,88(1):109-114
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase was partially purified from the homogenate of wounded tomato (Lycoperiscon esculentum Mill.) pericarp tissue by (NH4)2SO4 fractionation followed by conventional column chromatography with diethylaminoethyl-Sepharose, Sephadex G-150, Affi-Gel blue and hydroxylapatite. The partially purified ACC synthase preparation attained a specific activity of about 12,000 nmoles per hour per milligram protein. Employing this enzyme preparation, we confirmed that the ACC synthase was inactivated by its substrate, S-adenosyl-l-methionine (SAM), during its catalytic action. When the partially purified enzyme preparation was incubated with [3,4-14C]SAM and the resulting proteins were analyzed by sodium dodecyl sulfate-gel electrophoresis, only one radioactive protein band was observed. This protein was thought to be ACC synthase based on its molecular mass of 50 kD and on the fact that it was specifically bound to a monoclonal antibody against ACC synthase (AB Bleecker et al. 1986 Proc Natl Acad Sci USA 83, 7755-7759). These results suggest that the substrate SAM acts as an enzyme-activated inactivator of ACC synthase by covalently linking a fragment of SAM molecule to the active site of ACC synthase, resulting in the inactivation of the enzyme.  相似文献   

4.
1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis   总被引:40,自引:0,他引:40  
1-Aminocyclopropanecarboxylate (ACC) synthase, which catalyzes the conversion of S-adenosylmethionine (SAM) to ACC and methylthioadenosine, was demonstrated in tomato extract. Methylthioadenosine was then rapidly hydrolyzed to methylthioribose by a nucleosidase present in the extract. ACC synthase had an optimum pH of 8.5, and a Km of 20 μm with respect to SAM. S-Adenosylethionine also served as a substrate for ACC synthase, but at a lower efficiency than that of SAM. Since S-adenosylethionine had a higher affinity for the enzyme than SAM, it inhibited the reaction of SAM when both were present. S-Adenosylhomocysteine was, however, an inactive substrate. The enzyme was activated by pyridoxal phosphate at a concentration of 0.1 μm or higher, and competitively inhibited by aminoethoxyvinylglycine and aminooxyacetic acid, which are known to inhibit pyridoxal phosphate-mediated enzymic reactions. These results support the view that ACC synthase is a pyridoxal enzyme. The biochemical role of pyridoxal phosphate is catalyzing the formation of ACC by α,γ-elimination of SAM is discussed.  相似文献   

5.
1-Aminocyclopropane-1-carboxylic acid (ACC), which is a precursor of ethylene in plants, has never been known to occur in microorganisms. We describe the synthesis of ACC by Penicillium citrinum, purification of ACC synthase [EC 4.4.1.14] and ACC deaminase [EC 4.1.99.4], and their properties. Analyses of P. citrinum culture showed occurrence of ACC in the culture broth and in the cell extract. ACC synthase was purified from cells grown in a medium containing 0.05% L-methionine and ACC deaminase was done from cells incubated in a medium containing 1% 2-aminoisobutyrate. The purified ACC synthase, with a specific activity of 327 milliunit/mg protein, showed a single band of M r 48,000 in SDS-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme by gel filtration was 96,000 Da. The ACC synthase had the K m for S-adenosyl-L-methionine of 1.74 mM and k cat of 0.56 s-1 per monomer. The purified ACC deaminase, with a specific activity of 4.7 unit/mg protein, showed one band in SDS-polyacrylamide gel electrophoresis of M r 41,000. The molecular mass of the native ACC deaminase was 68,000 Da by gel filtration. The enzyme had a K m for ACC of 4.8 mM and k cat of 3.52 s-1. The presence of 7 mM Cu2+ in alkaline buffer solution was effective for increasing the stability of the ACC deaminase in the process of purification.  相似文献   

6.
Satoh S  Yang SF 《Plant physiology》1989,91(3):1036-1039
The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and followed pseudo-first-order kinetics at various concentrations of l-vinylglycine. The Michaelis constant for l-vinylglycine in the inactivation reaction (Kinact) was 3.3 millimolar and the maximum rate constant (kmax) was 0.1 per minute. These findings, coupled with the previous observations that the suicidal action of AdoMet involved a covalent linkage of the aminobutyrate portion of AdoMet to the enzyme, support the view that the mechanism-based inactivation of ACC synthase by the substrate AdoMet proceeds through the formation of a vinylglycine-ACC synthase complex as an intermediate.  相似文献   

7.
Spanu P  Felix G  Boller T 《Plant physiology》1990,93(4):1482-1485
The activity of 1-aminocyclopropane carboxylate (ACC) synthase increased rapidly in tomato (Lycopersicon esculentum Mill.) leaf discs after vacuum infiltration, reached a maximum after about 30 minutes, and subsequently decayed with an apparent half-life of about 20 minutes. Aminoethoxyvinylglycine, a known inhibitor of ACC synthase, did not alter the apparent turnover of ACC synthase in vivo although it efficiently blocked inactivation of the enzyme by its substrate S-adenosylmethionine in vitro. Similar results were obtained, using a novel assay with permeabilized cells, for ACC synthase in tomato cell cultures treated with a fungal elicitor. The results indicate that inactivation of ACC synthase in vivo differs from substrate-dependent inactivation in vitro.  相似文献   

8.
Ethylene is a gaseous hormone important for adaptation and survival in plants. To further understand the signaling and regulatory network of ethylene, we used a phenotype-based screening strategy to identify chemical compounds interfering with the ethylene response in Arabidopsis thaliana. By screening a collection of 10,000 structurally diverse small molecules, we identified compounds suppressing the constitutive triple response phenotype in the ethylene overproducer mutant eto1-4. The compounds reduced the expression of a reporter gene responsive to ethylene and the otherwise elevated level of ethylene in eto1-4. Structure and function analysis revealed that the compounds contained a quinazolinone backbone. Further studies with genetic mutants and transgenic plants involved in the ethylene pathway showed that the compounds inhibited ethylene biosynthesis at the step of converting S-adenosylmethionine to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. Biochemical studies with in vitro activity assay and enzyme kinetics analysis indicated that a representative compound was an uncompetitive inhibitor of ACC synthase. Finally, global gene expression profiling uncovered a significant number of genes that were co-regulated by the compounds and aminoethoxyvinylglycine, a potent inhibitor of ACC synthase. The use of chemical screening is feasible in identifying small molecules modulating the ethylene response in Arabidopsis seedlings. The discovery of such chemical compounds will be useful in ethylene research and can offer potentially useful agrochemicals for quality improvement in post-harvest agriculture.  相似文献   

9.
10.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, which formsAGC from S-adenosylmethionine (SAM), was purified to homogeneityfrom sliced and aged mesocarp tissue of Cucurbita maxima Duch.cv Ebisu fruits, and its enzymatic properties were determined.The specific activity of the purified enzyme was 220 mU/mg proteinat 30°C at 50 µM SAM. Native ACC synthase has a relativemolecular mass of 160 ± 10 kDa and consisted of two subunitsof about 84±3 kDa. S-adenosylhomocysteine (SAH), S-methylmethionine(SMM) and L-methionine did not serve as substrate. The enzymereaction was competitively inhibited by aminoethoxyvinylglycine(AVG) (Ki, 2.5 µM), aminooxyacetic acid (Ki, 40 µM)and SAH (Ki, 30 µM). The reaction was also strongly inhibitedby semicarbazide, and less effectively by homocysteine. Theenzyme was rapidly inactivated by its substrate, SAM in thepresence of pyridoxalphosphate (PLP), but in the absence ofPLP, SAM-induced inactivation was much slower. Inactivationdid not occur by SAH and SMM, SAM analogs without substrateactivity. Pyridoxal phosphate was an essential cofactor to beadded to a reaction mixture for maximum activity, but an enzymepreparation from which pyridoxal phosphate was removed by SephadexG-25 gel filtration exhibited one-eighth activity which wasinhibited by semicarbazide, this indicating that a small amountof pyridoxal phosphate is firmly bound to the enzyme. (Received May 6, 1986; Accepted May 20, 1986)  相似文献   

11.
We studied the regulation of 1-aminocyclopropane-1-carboxylate (ACC) synthase activity in tomato (Lycopersicon esculentum Mill.) fruit tissue and attempted the purification of this enzyme. The increase of ACC synthase activity in wounded tomato pericarp was inhibited by cordycepin and cycloheximide. Density labeling studies showed a 0.75% increase in the buoyant density of ACC synthase isolated from tomato pericarp tissue that had been incubated on 2H2O as compared to ACC synthase from H2O-treated tissue. These data are consistent with the hypothesis that ACC synthase is synthesized de novo following wounding of tomato pericarp tissue. SDS-gel electrophoresis and fluorography showed that the pattern of incorporation of l-[35S]methionine into protein changed with time after wounding of the tissue. Radioactive protein bands that were not detected 1 hour after wounding, became apparent 2 to 3 hours after wounding.  相似文献   

12.
13.
The substrate stereospecificity of 1-aminocyclopropane-1-carboxylic acid synthase, a pyridoxal phosphate-containing enzyme, from the pericarp tissue of Lycopersicon esculentum (tomatoes) was studied using the various stereoisomers of S-adenosylmethionine (AdoMet) at both the sulfonium pole and the amino acid center. The data indicate that only the naturally occurring isomer (?)Ado-L-Met acts as substrate (Km = 20±5 μM). Both (±)Ado-D-Met and (+)Ado-L-Met were inactive as substrates. The (+)Ado-L-Met (Ki = 15±5 μM) was found to be a potent inhibitor of ACC synthase whereas (±)Ado-D-Met (Ki = 70±20 μM) was less active as an inhibitor. This active isomer has the (S) configuration at both the sulfur and the α-carbon of the amino acid portion of AdoMet.  相似文献   

14.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

15.
Fuhrer J 《Plant physiology》1982,70(1):162-167
Stress ethylene production in bean (Phaseolus vulgaris L., cv. Taylor's Horticultural) leaf tissue was stimulated by Cd2+ at concentrations above 1 micromolar. Cd2+-induced ethylene biosynthesis was dependent upon synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. Activity of ACC synthase and ethylene production rate peaked at 8 h of treatment. The subsequent decline in enzyme activity was most likely due to inactivation of the enzyme by Cd2+, which inhibited ACC synthase activity in vitro at concentrations as low as 0.1 micromolar. Decrease in ethylene production rate was accompanied by leakage of solutes and increasing inhibition of ACC-dependent ethylene production. Ca2+, present during a 2-hour preincubation, reduced the effect of Cd2+ on leakage and ACC conversion. This suggests that Cd2+ exerts its toxicity through membrane damage and inactivation of enzymes. The possibility of an indirect stimulation of ethylene biosynthesis through a wound signal from injured cells is discussed.  相似文献   

16.
17.
In plants, the level of ethylene is determined by the activity of the key enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). A gene encoding an ACC synthase protein was isolated from pear (Pyrus pyrifolia). This gene designated PpACS1a (GenBank accession no. KC632526) was 1488 bp in length with an open reading frame (ORF) encoding a protein of 495 amino acids that shared high similarity with other pear ACC synthase proteins. The PpACS1a was grouped into type-1 subfamily of plant ACS based on its conserved domain and phylogenetic status. Real-time quantitative PCR indicated that PpACS1a was differentially expressed in pear tissues and predominantly expressed in anthers. The expression signal of PpACS1a was also detected in fruit and leaves, but no signal was detected in shoots and petals. Furthermore, the PpACS1a expression was regulated during fruit ripening. In addition, the PpACS1a gene expression was regulated by salicylic acid (SA) and indole-3-acetic acid (IAA) in fruit. Moreover, the expression of the PpACS1a was up-regulated in diseased pear fruit. These results indicated that PpACS1a might be involved in fruit ripening and response to SA, IAA and disease.  相似文献   

18.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

19.
S-nitrosoglutathione reductase (GSNOR), also known as S-(hydroxymethyl)glutathione (HMGSH) dehydrogenase, belongs to the large alcohol dehydrogenase superfamily, namely to the class III ADHs. GSNOR catalyses the oxidation of HMGSH to S-formylglutathione using a catalytic zinc and NAD+ as a coenzyme. The enzyme also catalyses the NADH-dependent reduction of S-nitrosoglutathione (GSNO). In plants, GSNO has been suggested to serve as a nitric oxide (NO) reservoir locally or possibly as NO donor in distant cells and tissues. NO and NO-related molecules such as S-nitrosothiols (S-NOs) play a central role in the regulation of normal plant physiological processes and host defence. The enzyme thus participates in the cellular homeostasis of S-NOs and in the metabolism of reactive nitrogen species. Although GSNOR has recently been characterized from several organisms, this study represents the first detailed biochemical and structural characterization of a plant GSNOR, that from tomato (Solanum lycopersicum). SlGSNOR gene expression is higher in roots and stems compared to leaves of young plants. It is highly expressed in the pistil and stamens and in fruits during ripening. The enzyme is a dimer and preferentially catalyses reduction of GSNO while glutathione and S-methylglutathione behave as non-competitive inhibitors. Using NAD+, the enzyme oxidizes HMGSH and other alcohols such as cinnamylalcohol, geraniol and ω-hydroxyfatty acids. The crystal structures of the apoenzyme, of the enzyme in complex with NAD+ and in complex with NADH, solved up to 1.9 Å resolution, represent the first structures of a plant GSNOR. They confirm that the binding of the coenzyme is associated with the active site zinc movement and changes in its coordination. In comparison to the well characterized human GSNOR, plant GSNORs exhibit a difference in the composition of the anion-binding pocket, which negatively influences the affinity for the carboxyl group of ω-hydroxyfatty acids.  相似文献   

20.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号