首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wild-type (wt) N-terminal 23-residue fusion peptide (FP) of the human immunodeficiency virus (HIV) fusion protein gp41 and its V2E mutant have been studied by nuclear magnetic resonance (NMR) spectroscopy in dodecylphosphocholine (DPC) micelles as membrane mimics. A number of NMR techniques have been used. Pulsed field-gradient diffusion measurements in DPC and in 4:1 DPC/sodium dodecylsulfate mixed micelles showed that there is no major difference between the partition coefficients of the fusogenic wt peptide and the V2E mutant in these micelles, indicating that there is no correlation between the activity of the fusion peptides and their membrane affinities. The nuclear Overhauser enhancement (NOE) patterns and the chemical shift index for these two peptides indicated that both FP are in an alpha helical conformation between the Ile4 to Leu12 or to Ala15 region. Simulated annealing showed that the helical region extends from Ile4 to Met19. The two FPs share similar conformational characteristics, indicating that the conformation of the FP is not an important factor determining its activity. The spin-label studies, utilizing spin labels 5- and 16-doxystearic acids in the DPC micelles, provided clear indication that the wt FP inserts its N-terminus into the micelles while the V2E mutant does not insert into the micelles. The conclusion from the spin-label results is corroborated by deuterium amide proton exchange experiments. The correlation between the oblique insertion of the FP and its fusogenic activity is in excellent agreement with results from our molecular dynamics simulation and from other previous studies.  相似文献   

2.
The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15N{1H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV.  相似文献   

3.
Fourier-transformed infrared spectroscopy (FTIR) and molecular dynamics (MD) simulation results are presented to support our hypothesis that the conformation and the oligomeric state of the HIV-1 gp41 fusion domain or fusion peptide (gp41-FP) are determined by the membrane surface area per lipid (APL), which is affected by the membrane curvature. FTIR of the gp41-FP in the Aerosol-OT (AOT) reversed micellar system showed that as APL decreases from ∼ 50 to 35 Å2 by varying the AOT/water ratio, the FP changes from the monomeric α-helical to the oligomeric β-sheet structure. MD simulations in POPE lipid bilayer systems showed that as the APL decreases by applying a negative surface tension, helical monomers start to unfold into turn-like structures. Furthermore, an increase in the applied lateral pressure during nonequilibrium MD simulations favored the formation of β-sheet structure. These results provide better insight into the relationship between the structures of the gp41-FP and the membrane, which is essential in understanding the membrane fusion process. The implication of the results of this work on what is the fusogenic structure of the HIV-1 FP is discussed.  相似文献   

4.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out fusion between the virus and the host cells. However, the exact mechanism of the cell fusion process is not well understood. Current model suggests that a conformational transition, upon receptor recognition, of the two heptad core regions of S2 may expose the hydrophobic fusogenic peptide or fusion peptide for membrane insertion. Three regions of the S2 subunit have been proposed to be involved in cell–cell fusion. The N-terminal fusion peptide (FP, residues 770–788), an internal fusion peptide (IFP, residues 873–888) and the pre-transmembrane region (PTM, residues 1185–1202) demonstrated interactions with model lipid membranes and potentially involved in the fusion process. Here, we have determined atomic resolution structures of these three peptides in DPC detergent micelles by solution NMR. FP assumes α-helical conformation with significant distortion at the central Gly residues; enabling a close packing among sidechains of aromatic residues including W, Y and F. The 3-D structure of PMT is characterized by a helix–loop–helix with extensive aromatic interactions within the helices. IFP adopts a rather straight α-helical conformation defined by packing among sidechains of aromatic and aliphatic residues. Paramagnetic spin labeled NMR has demonstrated surface localization of PMT whereas FP and IFP inserted into the micelles. Collectively, data presented in this study will aid in understanding fusion mechanism of SARS-CoV.  相似文献   

5.
In this work, molecular dynamics (MD) simulation of the interaction of three mutants, G3V, G5V and G10V, of the human immunodeficiency virus (HIV) gp41 16-residue fusion peptide (FP) with an explicit palmitoyloleoylphosphatidyl-ethanolamine (POPE) lipid bilayer was performed. The goals of this work are to study the correlation of the fusogenic activity of the FPs with the mode of their interaction with the bilayer and to examine the roles of the many glycine residues in the FP in the fusion process. The results of this work corroborate the main conclusion of our earlier MD work of the WT FP and several mutants with polar substitution. These two studies provide correlation between the mode of insertion and the fusogenic activity of these peptides and support the hypothesis that an oblique insertion of the fusion domain of the viral protein is required for fusogenic activity. Inactive mutants interact with the bilayer by a surface-binding mode. The results of this work, combined with the results of our earlier work, show that, while the secondary structures of the wild-type FP and its mutants do not affect the fusogenic activities, the conformational flexibility appears to be an important factor. The active WT FP and its partially active mutants, G3V and G5V, all have significant conformational transitions at one of the glycine sites. They occur at Gly5 in FP-wt, at Gly10 in FP-G5V and at Gly13 in FP-G3V. Thus, a glycine site in each of these active (or partially active) FPs provides conformational flexibility. On the other hand, the inactive mutants FP-G10V, FP-L9R and FP-V2E do not have any conformational transitions except at either terminus and thus possess no conformational flexibility. Thus, the results of this work support the suggestion that the role of glycine residues in the fusion domain is to provide the necessary conformational flexibility for fusion activity.The glycines also form a “glycine strip” in the FP that locates on one (the less hydrophobic) face of the helix (the “sided helix”). However, whether this “glycine strip” is disrupted or not does not seem to correlate with the retention of fusogenic activities. Finally, although the FLGFL (8-12) motif is absolutely conserved in the HIV fusion domain, a well-structured motif stabilized by hydrogen bonding does not appear to be required for activity. In fact, hydrogen bonding in this motif was found to be missing in FP-G3V and FP-G5V. Both of these mutants are partially active.  相似文献   

6.
Melittin, the major component of the honey bee venom, is a 26-residue hemolytic and membrane active peptide. Structures of melittin determined either in lipid environments by NMR or by use of X-ray demonstrated two helical regions at the N- and C-termini connected by a hinge or a bend at the middle. Here, we show that deletion of the hinge residues along with two C-terminal terminal Gln residues (Q25 and Q26), yielding a peptide analog of 19-residue or Mel-H, did not affect antibacterial activity but resulted in a somewhat reduced hemolytic activity. A diastereomer of Mel-H or Mel-dH containing d-amino acids [dV5, dV8, dL11 and dK16] showed further reduction in hemolytic activity without lowering antibacterial activity. We have carried out NMR structures, dynamics (H-D exchange and proton relaxation), membrane localization by spin labeled lipids, pulse-field-gradient (PFG) NMR and isothermal titration calorimetry (ITC) in dodecylphosphocholine (DPC) micelles, as a mimic to eukaryotic membrane, to gain insights into cell selectivity of these melittin analogs. PFG-NMR showed Mel-H and Mel-dH both were similarly partitioned into DPC micelles. ITC demonstrated that Mel-H and Mel-dH interact with DPC with similar affinity. The micelle-bound structure of Mel-H delineated a straight helical conformation, whereas Mel-dH showed multiple β-turns at the N-terminus and a short helix at the C-terminus. The backbone amide-proton exchange with solvent D2O demonstrated a large difference in dynamics between Mel-H and Mel-dH, whereby almost all backbone protons of Mel-dH showed a much faster rate of exchange as compared to Mel-H. Proton T1 relaxation had suggested a mobile backbone of Mel-dH peptide in DPC micelles. Resonance perturbation by paramagnetic lipids indicated that Mel-H inserted deeper into DPC micelles, whereas Mel-dH is largely located at the surface of the micelle. Taken together, results presented in this study demonstrated that the poor hemolytic activity of the d-amino acid containing analogs of antimicrobial peptides may be correlated with their flexible dynamics at the membrane surface.  相似文献   

7.
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state 19F nuclear magnetic resonance (NMR) approach was used to collect local orientational constraints from a series of CF3-phenylglycine-labeled peptide analogues in macroscopically aligned membranes. Fusion assays showed that these 19F-labels did not significantly affect peptide function. The NMR spectra were characteristic of well-behaved samples, without any signs of heterogeneity or peptide aggregation at 1:300 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We can conclude from these NMR data that FP23 has a well-defined (time-averaged) conformation and undergoes lateral diffusion in the bilayer plane, presumably as a monomer or small oligomer. Attempts to evaluate its conformation in terms of various secondary structures, however, showed that FP23 does not form any type of regular helix or β-strand. Therefore, all-atom molecular dynamics (MD) simulations were carried out using the orientational NMR constraints as pseudo-forces to drive the peptide into a stable alignment and structure. The resulting picture suggests that FP23 can adopt multiple β-turns and insert obliquely into the membrane. Such irregular conformation explains why the structure of the fusion peptide could not be reliably determined by any biophysical method so far.  相似文献   

8.
The conformation of two fragments of rabbit uteroglobin is described. The peptides are PRFAHVIENLL and PQTTRENIMKLTEKIVK, corresponding to helices I and IV in the crystal structure. CD shows that both peptides interact with sodium dodecyl sulfate (SDS) micelles and change their conformation to an α-helix. The helical content estimated from the CD band at 222 nm is about 40% in each peptide. Surface tension measurements show that both peptides lower the critical micellar concentration (cmc) of SDS, with a more dramatic effect in the case of helix I. This peptide by itself acts as a surfactant, and is able to interact with SDS even below the observed cmc, forming β aggregates. Proton magnetic resonance (1H-nmr) suggests that flexible helices are present. The longest helical stretches compatible with 1H-nmr data extend from Phe6 to Leu14 for helix I and from Arg53 to Ile63 for helix IV. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Abstract

Both the aqueous and lipid-induced structure of Kassinin, a dodecapeptide of amphibian origin, has been studied by two-dimensional proton nuclear magnetic resonance (2D 1H-NMR) spectroscopy and distance geometry calculations. Unambiguous NMR assignments of protons have been made with the aid of correlation spectroscopy (DQF-COSY and TOCSY) experiments and nuclear Overhauser effect spectroscopy (NOESY and ROESY) experiments. The distance constraints obtained from the NMR data have been utilized in a distance geometry algorithm to generate a family of structures, which have been refined using restrained energy minimization and dynamics. These data show that, while in water Kassinin prefers to be in an extended chain conformation, in the presence of perdeuterated dodecylphosphocholine (DPC) micelles, a membrane model system, helical conformation is induced in the central core and C-terminal region (K4-M12) of the peptide. N-terminus though less defined also displays some degree of order and a possible turn structure. The conformation adopted by Kassinin in the presence of DPC micelles is consistent with the structural motif typical of neurokinin-1 selective agonists and with that reported for Eledoisin in hydrophobic environment.  相似文献   

10.
In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T55VYVYSRVK63) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis.  相似文献   

11.
In this work, molecular dynamics (MD) simulation of the interaction of three mutants, G3V, G5V and G10V, of the human immunodeficiency virus (HIV) gp41 16-residue fusion peptide (FP) with an explicit palmitoyloleoylphosphatidyl-ethanolamine (POPE) lipid bilayer was performed. The goals of this work are to study the correlation of the fusogenic activity of the FPs with the mode of their interaction with the bilayer and to examine the roles of the many glycine residues in the FP in the fusion process. The results of this work corroborate the main conclusion of our earlier MD work of the WT FP and several mutants with polar substitution. These two studies provide correlation between the mode of insertion and the fusogenic activity of these peptides and support the hypothesis that an oblique insertion of the fusion domain of the viral protein is required for fusogenic activity. Inactive mutants interact with the bilayer by a surface-binding mode. The results of this work, combined with the results of our earlier work, show that, while the secondary structures of the wild-type FP and its mutants do not affect the fusogenic activities, the conformational flexibility appears to be an important factor. The active WT FP and its partially active mutants, G3V and G5V, all have significant conformational transitions at one of the glycine sites. They occur at Gly(5) in FP-wt, at Gly(10) in FP-G5V and at Gly(13) in FP-G3V. Thus, a glycine site in each of these active (or partially active) FPs provides conformational flexibility. On the other hand, the inactive mutants FP-G10V, FP-L9R and FP-V2E do not have any conformational transitions except at either terminus and thus possess no conformational flexibility. Thus, the results of this work support the suggestion that the role of glycine residues in the fusion domain is to provide the necessary conformational flexibility for fusion activity.The glycines also form a "glycine strip" in the FP that locates on one (the less hydrophobic) face of the helix (the "sided helix"). However, whether this "glycine strip" is disrupted or not does not seem to correlate with the retention of fusogenic activities. Finally, although the FLGFL (8-12) motif is absolutely conserved in the HIV fusion domain, a well-structured motif stabilized by hydrogen bonding does not appear to be required for activity. In fact, hydrogen bonding in this motif was found to be missing in FP-G3V and FP-G5V. Both of these mutants are partially active.  相似文献   

12.
A 20-residue peptide E5 containing five glutamates, an analog of the fusion peptide of influenza virus hemagglutinin (HA) exhibiting fusion activity at acidic pH lower than 6.0-6.5 was studied by circular dichroism (CD), Fourier transform infrared, and 1H-NMR spectroscopy in water, water/trifluoroethanol (TFE) mixtures, dodecylphosphocholine (DPC) micelles, and phospholipid vesicles. E5 became structurally ordered at pH < or = 6 and the helical content in the peptide increased in the row: water < water/TFE < DPC approximately = phospholipid vesicle while the amount of beta-structure was approximately reverse. 1H-NMR data and line-broadening effect of 5-, 16-doxylstearates on proton resonances of DPC bound peptide showed E5 forms amphiphilic alpha-helix in residues 2-18, which is flexible in 11-18 part. The analysis of the proton chemical shifts of DPC bound and CD intensity at 220 nm of phospholipid bound E5 showed that the pH dependence of helical content is characterized by the same pKa approximately 5.6. Only Glu11 and Glu15 in DPC bound peptide showed such elevated pKas, presumably due to transient hydrogen bond(s) Glu11 (Glu15) deltaCOO- (H+)...HN Glu15 that dispose(s) the side chain of Glu11 (Glu15) residue(s) close to the micelle/water interface. These glutamates are present in the HA-fusion peptide and the experimental half-maximal pH of fusion for HA and E5 peptides is approximately 5.6. Therefore, a specific anchorage of these peptides onto membrane necessary for fusion is likely driven by the protonation of the carboxylate group of Glu11 (Glu15) residue(s) participating in transient hydrogen bond(s).  相似文献   

13.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

14.
Abstract

Neurokinin B (NKB), a decapeptide of mammalian origin exhibits a variety of biological activities such as regulatory functions in reproduction, pre-eclampsia and neuroprotection in Alzheimer's disease. In order to gain insight into structure-function relationship, three- dimensional structure of NKB has been investigated using CD spectropolarimetry and two-dimensional proton nuclear magnetic resonance (2D 1H-NMR) spectroscopy in aqueous and membrane mimetic solvents. Unambiguous NMR assignments of resonances have been made with the aid of correlation spectroscopy (DQF-COSY and TOCSY) experiments and Nuclear Overhauser Effect Spectroscopy (NOESY) experiments. Distance constraints obtained from the NMR data have been used to generate a family of structures, which have been refined using restrained energy minimization and dynamics. Our data show that a helical structure is induced in NKB, in presence of perdeuterated dodecyl phosphocholine (DPC) micelles, a membrane model system. Further, the conformation adopted by NKB in presence of DPC micelles represents a structural motif typical of neurokinin-3 selective agonists.  相似文献   

15.
Anionic and zwitterionic micelles are often used as simple models for the lipids found in bacterial and mammalian cell membranes to investigate antimicrobial peptide‐lipid interactions. In our laboratory we have employed a variety of 1D, 2D, and diffusion ordered (DOSY) NMR experiments to investigate the interactions of antimicrobial peptides containing unnatural amino acids with SDS and DPC micelles. Complete assignment of the proton spectra of these peptides is prohibited by the incorporation of a high percentage of unnatural amino acids which don't contain amide protons into the backbone. However preliminary assignment of the TOCSY spectra of compound 23 in the presence of both micelles indicated multiple conformers are present as a result of binding to these micelles. Chemical Shift Indexing agreed with previously collected CD spectra that indicated on binding to SDS micelles compound 23 adopts a mixture of α‐helical structures and on binding to DPC micelles this peptide adopts a mixture of helical and β‐turn/sheet like structures. DOSY NMR experiments also indicated that the total positive charge and the relative placement of that charge at the N‐terminus or C‐terminus are important in determining the mole fraction of the peptide that will bind to the different micelles. DOSY and 1H‐NMR experiments indicated that the length of Spacer #1 plays a major role in defining the binding conformation of these analogs with SDS micelles. Results obtained from molecular simulations studies of the binding of compounds 23 and 36 with SDS micelles were consistent with the observed NMR results. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 548–561, 2013.  相似文献   

16.
The influenza fusion peptide located at the N‐terminus of the hemagglutinin HA2 subunit initiates the fusing process of the viral membrane with the host cell endosomal membrane. It had been reported that the structure of a 20‐residue H3 subtype fusion peptide (H3‐HAfp20) was significantly different with that of a H1 subtype 23‐residue one (H1‐HAfp23). The sequential difference between the 12th and 15th residues of H1 and H3 subtypes could not fully explain the conformational variation. The first and last three amino acids of H3‐HAfp23 involved in formation of hydrogen bonds may play an important role in fusion process. To confirm this hypothesis, we investigate the structures of H3‐HAfp23 peptide and its mutants, G1S and G1V, in dodecylphosphatidyl choline micelles by using heteronuclear NMR technology. The results demonstrate that, similar to H1‐HAfp23 but significantly different with H3‐HAfp20, H3‐HAfp23 also has tight helical hairpin structure with the N‐ and C‐terminuses linked together because of the hydrogen bonds between Gly1 and the last three amino acids, Trp21―Tyr22―Gly23. Although the ‘hemifusion’ G1S and lethal G1V mutants have hairpin‐like helical structures, the distances between the N‐ and C‐terminuses are increased as shortage of the hydrogen bonds and the larger kink angle between the antiparallel helices. The paramagnetic ion titration experiments show that the terminuses are inserted into the dodecylphosphatidyl choline micelles used as solving media. These may imply that the tight helical hairpin structure, especially the closed conformation at terminus, plays an important role in fusion activity. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Fusion between viral and host cell membranes is the initial step of human immunodeficiency virus infection and is mediated by the gp41 protein, which is embedded in the viral membrane. The ∼ 20-residue N-terminal fusion peptide (FP) region of gp41 binds to the host cell membrane and plays a critical role in fusion catalysis. Key gp41 fusion conformations include an early pre-hairpin intermediate (PHI) characterized by extended coiled-coil structure in the region C-terminal of the FP and a final hairpin state with compact six-helix bundle structure. The large “N70” (gp41 1-70) and “FP-Hairpin” constructs of the present study contained the FP and respectively modeled the PHI and hairpin conformations. Comparison was also made to the shorter “FP34” (gp41 1-34) fragment. Studies were done in membranes with physiologically relevant cholesterol content and in membranes without cholesterol. In either membrane type, there were large differences in fusion function among the constructs with little fusion induced by FP-Hairpin, moderate fusion for FP34, and very rapid fusion for N70. Overall, our findings support acceleration of gp41-induced membrane fusion by early PHI conformation and fusion arrest after folding to the final six-helix bundle structure. FP secondary structure at Leu7 of the membrane-associated constructs was probed by solid-state nuclear magnetic resonance and showed populations of molecules with either β-sheet or helical structure with greater β-sheet population observed for FP34 than for N70 or FP-Hairpin. The large differences in fusion function among the constructs were not obviously correlated with FP secondary structure. Observation of cholesterol-dependent FP structure for fusogenic FP34 and N70 and cholesterol-independent structure for non-fusogenic FP-Hairpin was consistent with membrane insertion of the FP for FP34 and N70 and with lack of insertion for FP-Hairpin. Membrane insertion of the FP may therefore be associated with the early PHI conformation and FP withdrawal with the final hairpin conformation.  相似文献   

18.
19.
The structures of the 16-residue fusion domain (or fusion peptide, FP) of the human immunodeficiency virus gp41 fusion protein, two of its mutants, and a shortened peptide (5-16) were studied by molecular dynamics simulation in an explicit palmitoyloleoylphosphoethanolamine bilayer. The simulations showed that the active wild-type FP inserts into the bilayer approximately 44 degrees +/- 6 degrees with respect to the bilayer normal, whereas the inactive V2E and L9R mutants and the inactive 5 to 16 fragment lie on the bilayer surface. This is the first demonstration by explicit molecular dynamics of the oblique insertion of the fusion domain into lipid bilayers, and provides correlation between the mode of insertion and the fusogenic activity of these peptides. The membrane structure of the wild-type FP is remarkably similar to that of the influenza HA(2) FP as determined by nuclear magnetic resonance and electron spin resistance power saturation. The secondary structures of the wild-type FP and the two inactive mutants are quite similar, indicating that the secondary structure of this fusion domain plays little or no role in affecting the fusogenic activity of the fusion peptide. The insertion of the wild-type FP increases the thickness of the interfacial area of the bilayer by disrupting the hydrocarbon chains and extending the interfacial area toward the head group region, an effect that was not observed in the inactive FPs.  相似文献   

20.
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~ 20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not well characterized in large gp41 constructs that model the gp41 state at different times during fusion. This paper describes solid-state NMR (SSNMR) studies of FP structure in a membrane-associated construct (FP-Hairpin), which likely models the final fusion state thought to be thermostable trimers with six-helix bundle structure in the region C-terminal of the FP. The SSNMR data show that there are populations of FP-Hairpin with either α helical or β sheet FP conformation. For the β sheet population, measurements of intermolecular 13C-13C proximities in the FP are consistent with a significant fraction of intermolecular antiparallel β sheet FP structure with adjacent strand crossing near L7 and F8. There appears to be negligible in-register parallel structure. These findings support assembly of membrane-associated gp41 trimers through interleaving of N-terminal FPs from different trimers. Similar SSNMR data are obtained for FP-Hairpin and a construct containing the 70 N-terminal residues of gp41 (N70), which is a model for part of the putative pre-hairpin intermediate state of gp41. FP assembly may therefore occur at an early fusion stage. On a more fundamental level, similar SSNMR data are obtained for FP-Hairpin and a construct containing the 34 N-terminal gp41 residues (FP34) and support the hypothesis that the FP is an autonomous folding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号